https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=33042127&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 330421272021050620210506
1664-3224112020Frontiers in immunologyFront ImmunolCXCL4 Links Inflammation and Fibrosis by Reprogramming Monocyte-Derived Dendritic Cells in vitro.21492149214910.3389/fimmu.2020.02149Fibrosis is a condition shared by numerous inflammatory diseases. Our incomplete understanding of the molecular mechanisms underlying fibrosis has severely hampered effective drug development. CXCL4 is associated with the onset and extent of fibrosis development in multiple inflammatory and fibrotic diseases. Here, we used monocyte-derived cells as a model system to study the effects of CXCL4 exposure on dendritic cell development by integrating 65 longitudinal and paired whole genome transcriptional and methylation profiles. Using data-driven gene regulatory network analyses, we demonstrate that CXCL4 dramatically alters the trajectory of monocyte differentiation, inducing a novel pro-inflammatory and pro-fibrotic phenotype mediated via key transcriptional regulators including CIITA. Importantly, these pro-inflammatory cells directly trigger a fibrotic cascade by producing extracellular matrix molecules and inducing myofibroblast differentiation. Inhibition of CIITA mimicked CXCL4 in inducing a pro-inflammatory and pro-fibrotic phenotype, validating the relevance of the gene regulatory network. Our study unveils that CXCL4 acts as a key secreted factor driving innate immune training and forming the long-sought link between inflammation and fibrosis.Copyright © 2020 Silva-Cardoso, Tao, Angiolilli, Lopes, Bekker, Devaprasad, Giovannone, van Laar, Cossu, Marut, Hack, de Boer, Boes, Radstake and Pandit.Silva-CardosoSandra CSCCenter for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.TaoWeiyangWCenter for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.AngiolilliChiaraCCenter for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.LopesAna PAPCenter for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.BekkerCornelis P JCPJCenter for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.DevaprasadAbhinandanACenter for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.GiovannoneBarbaraBDepartment of Dermatology and Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.van LaarJaapJDepartment of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.CossuMartaMCenter for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.MarutWioletaWCenter for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.HackErikECenter for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.de BoerRob JRJTheoretical Biology, Utrecht University, Utrecht, Netherlands.BoesMarianneMCenter for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.Department of Pediatrics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.RadstakeTimothy R D JTRDJCenter for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.PanditAridamanACenter for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.engJournal ArticleResearch Support, Non-U.S. Gov't20200917
SwitzerlandFront Immunol1015609601664-32240MHC class II transactivator protein0Nuclear Proteins0PF4 protein, human0RNA, Small Interfering0Trans-Activators37270-94-3Platelet Factor 4776B62CQ27DecitabineO84C90HH2LPoly I-CIMCells, CulturedCellular Reprogramming TechniquesDNA MethylationDecision TreesDecitabinepharmacologyDendritic CellscytologyFibroblastsFibrosisgeneticsimmunologyGene Regulatory NetworksHumansInflammationgeneticsimmunologyMonocytescytologyMultidimensional Scaling AnalysisNuclear Proteinsantagonists & inhibitorsphysiologyPlatelet Factor 4physiologyPoly I-CpharmacologyRNA InterferenceRNA, Small InterferinggeneticspharmacologyRNA-SeqTrans-Activatorsantagonists & inhibitorsphysiologyTranscriptomeCXCL4dendritic cellsfibrosisgene regulatory networksinflammation
202042420208720201012529202010136020215760202011epublish33042127PMC752741510.3389/fimmu.2020.02149Rinkevich Y, Walmsley GG, Hu MS, Maan ZN, Newman AM, Drukker M, et al. . Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science. (2015) 348:aaa2151. 10.1126/science.aaa215110.1126/science.aaa2151PMC508850325883361Zeisberg M, Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol. (2013) 304:C216–25. 10.1152/ajpcell.00328.201210.1152/ajpcell.00328.2012PMC356643523255577Dowson C, Simpson N, Duffy L, O'Reilly S. Innate Immunity in Systemic Sclerosis. Curr Rheumatol Rep. (2017) 19:2. 10.1007/s11926-017-0630-310.1007/s11926-017-0630-328116578Wick G, Backovic A, Rabensteiner E, Plank N, Schwentner C, Sgonc R. The immunology of fibrosis: innate and adaptive responses. Trends Immunol. (2010) 31:110–9. 10.1016/j.it.2009.12.00110.1016/j.it.2009.12.001PMC329279620106721Levine SP, Wohl H. Human platelet factor 4 - purification and characterization by affinity chromatography - purification of human platelet factor-4. J Biol Chem. (1976) 251:324–8.812871Schaffner A, Rhyn P, Schoedon G, Schaer DJ. Regulated expression of platelet factor 4 in human monocytes - role of PARs as a quantitatively important monocyte activation pathway. J Leukocyte Biol. (2005) 78:202–9. 10.1189/jlb.010502410.1189/jlb.010502415788441van Bon L, Affandi AJ, Broen J, Christmann RB, Marijnissen RJ, Stawski L, et al. . Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. New Engl J Med. (2014) 370:433–43. 10.1056/NEJMoa111457610.1056/NEJMoa1114576PMC404046624350901Norozi F, Shahrabi S, Hajizamani S, Saki N. Regulatory role of megakaryocytes on hematopoietic stem cells quiescence by CXCL4/PF4 in bone marrow niche. Leukemia Res. (2016) 48:107–12. 10.1016/j.leukres.2015.12.01210.1016/j.leukres.2015.12.01226803701Sinclair A, Park L, Shah M, Drotar M, Calaminus S, Hopcroft LEM, et al. . CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood. (2016) 128:371–83. 10.1182/blood-2015-08-66178510.1182/blood-2015-08-661785PMC499108727222476Fricke I, Mitchell D, Petersen F, Bohle A, Bulfone-Paus S, Brandau S. Platelet factor 4 in conjunction with IL-4 directs differentiation of human monocytes into specialized antigen-presenting cells. Faseb J. (2004) 18:1588–90. 10.1096/fj.03-1435fje10.1096/fj.03-1435fje15319366Gouwy M, Ruytinx P, Radice E, Claudi F, Van Raemdonck K, Bonecchi R, et al. . CXCL4 and CXCL4L1 differentially affect monocyte survival and dendritic cell differentiation and phagocytosis. PLoS ONE. (2016) 11:e0166006. 10.1371/journal.pone.016600610.1371/journal.pone.0166006PMC510243127828999Xia CQ, Kao KJ. Effect of CXC chemokine platelet factor 4 on differentiation and function of monocyte-derived dendritic cells. Int Immunol. (2003) 15:1007–15. 10.1093/intimm/dxg10010.1093/intimm/dxg10012882838Romagnani P, Maggi L, Mazzinghi B, Cosmi L, Lasagni L, Liotta F, et al. CXCR3-mediated opposite effects of CXCL10 and CXCL4 on T(H)1 or T-H cytokine production. J Allergy Clin Immun. (2005) 116:1372–9. 10.1016/j.jaci.2005.09.03510.1016/j.jaci.2005.09.03516337473Affandi AJ, Silva-Cardoso SC, Garcia S, Leijten EFA, van Kempen TS, Marut W, et al. . CXCL4 is a novel inducer of human Th17 cells and correlates with IL-17 and IL-22 in psoriatic arthritis. Eur J Immunol. (2018) 48:522–31. 10.1002/eji.20174719510.1002/eji.201747195PMC588817829193036Aivado M, Spentzos D, Germing U, Alterovitz G, Meng XY, Grall F, et al. . Serum proteome profiling detects myelodysplastic syndromes and identifies CXC chemokine ligands 4 and 7 as markers for advanced disease. Proc Natl Acad Sci USA. (2007) 104:1307–12. 10.1073/pnas.061033010410.1073/pnas.0610330104PMC178313717220270Auerbach DJ, Lin Y, Miao HY, Cimbro R, DiFiore MJ, Gianolini ME, et al. . Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor. Proc Natl Acad Sci USA. (2012) 109:9569–74. 10.1073/pnas.120731410910.1073/pnas.1207314109PMC338609922645343Domschke G, Gleissner CA. CXCL4-induced macrophages in human atherosclerosis. Cytokine. (2019) 122:154141. 10.1016/j.cyto.2017.08.02110.1016/j.cyto.2017.08.02128899579Kioon MDA, Tripodo C, Fernandez D, Kirou KA, Spiera RF, Crow MK, et al. . Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci Transl Med. (2018) 10:eaam8458. 10.1126/scitranslmed.aam845810.1126/scitranslmed.aam8458PMC986542929321259Scheuerer B, Ernst M, Durrbaum-Landmann I, Fleischer J, Grage-Griebenow E, Brandt E, et al. . The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages. Blood. (2000) 15:95:1158–66. 10.1182/blood.V95.4.1158.004k31_1158_116610.1182/blood.V95.4.1158.004k31_1158_116610666185Silva-Cardoso SC, Affandi AJ, Spel L, Cossu M, van Roon JAG, Boes M, et al. . CXCL4 exposure potentiates TLR-driven polarization of human monocyte-derived dendritic cells and increases stimulation of T cells. J Immunol. (2017) 199:253–62. 10.4049/jimmunol.160202010.4049/jimmunol.160202028515281Silva-Cardoso SC, Bekker CPJ, Boes M, Radstake T, Angiolilli C. CXCL4 is a driver of cytokine mRNA stability in monocyte-derived dendritic cells. Mol Immunol. (2019) 114:524–34. 10.1016/j.molimm.2019.09.00410.1016/j.molimm.2019.09.00431518856Wilson NO, Jain V, Roberts CE, Lucchi N, Joel PK, Singh MP, et al. . CXCL4 and CXCL10 predict risk of fatal cerebral malaria. Dis Markers. (2011) 30:39–49. 10.1155/2011/82825610.1155/2011/828256PMC326002721508508Yeo L, Adlard N, Biehl M, Juarez M, Smallie T, Snow M, et al. . Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid arthritis. Ann Rheum Dis. (2016) 75:763–71. 10.1136/annrheumdis-2014-20692110.1136/annrheumdis-2014-206921PMC481960625858640Vrij AA, Rijken J, van Wersch JWJ, Stockbrugger RW. Platelet factor 4 and beta-thromboglobulin in inflammatory bowel disease and giant cell arteritis. Eur J Clin Invest. (2000) 30:188–94. 10.1046/j.1365-2362.2000.00616.x10.1046/j.1365-2362.2000.00616.x10691994Sachais BS, Turrentine T, McKenna JMD, Rux AH, Rader D, Kowalska MA. Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57BI/6 and apoE(-/-) mice. Thromb Haemostasis. (2007) 98:1108–13. 10.1160/TH07-04-027110.1160/TH07-04-027118000617Zaldivar MM, Pauels K, von Hundelshausen P, Berres ML, Schmitz P, Bornemann J, et al. . CXC Chemokine Ligand 4 (CXCL4) Is a Platelet-Derived Mediator of Experimental Liver Fibrosis. Hepatology. (2010) 51:1345–53. 10.1002/hep.2343510.1002/hep.2343520162727Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. (2010) 11:373–84. 10.1038/ni.186310.1038/ni.186320404851Affandi AJ, Carvalheiro T, Radstake TRDJ, Marut W. Dendritic cells in systemic sclerosis: advances from human and mice studies. Immunol Lett. (2018) 195:18–29. 10.1016/j.imlet.2017.11.00310.1016/j.imlet.2017.11.00329126878Rossato M, Affandi AJ, Thordardottir S, Wichers CGK, Cossu M, Broen JCA, et al. . Association of MicroRNA-618 expression with altered frequency and activation of plasmacytoid dendritic cells in patients with systemic sclerosis. Arthritis Rheumatol. (2017) 69:1891–902. 10.1002/art.4016310.1002/art.4016328556560van Bon L, Popa C, Huijbens R, Vonk M, York M, Simms R, et al. . Distinct evolution of TLR-mediated dendritic cell cytokine secretion in patients with limited and diffuse cutaneous systemic sclerosis. Ann Rheum Dis. (2010) 69:1539–47. 10.1136/ard.2009.12820710.1136/ard.2009.12820720498209Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. (2015) 31:166–9. 10.1093/bioinformatics/btu63810.1093/bioinformatics/btu638PMC428795025260700Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. (2014) 15:550. 10.1186/s13059-014-0550-810.1186/s13059-014-0550-8PMC430204925516281Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. . Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. (2014) 30:1363–9. 10.1093/bioinformatics/btu04910.1093/bioinformatics/btu049PMC401670824478339Nordlund J, Backlin CL, Wahlberg P, Busche S, Berglund EC, Eloranta ML, et al. . Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. (2013) 14:r105. 10.1186/gb-2013-14-9-r10510.1186/gb-2013-14-9-r105PMC401480424063430Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, et al. . ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics. (2014) 30:428–30. 10.1093/bioinformatics/btt68410.1093/bioinformatics/btt684PMC390452024336642Jiao YM, Widschwendter M, Teschendorff AE. A systems-level integrative framework for genome-wide DNA methylation and gene expression data identifies differential gene expression modules under epigenetic control. Bioinformatics. (2014) 30:2360–6. 10.1093/bioinformatics/btu31610.1093/bioinformatics/btu31624794928Yu GC, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst. (2016) 12:477–9. 10.1039/C5MB00663E10.1039/C5MB00663E26661513Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. Bmc Bioinformatics. (2008) 9:559. 10.1186/1471-2105-9-55910.1186/1471-2105-9-559PMC263148819114008Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE. (2010) 5:e12776. 10.1371/journal.pone.001277610.1371/journal.pone.0012776PMC294691020927193Walley JW, Sartor RC, Shen ZX, Schmitz RJ, Wu KJ, Urich MA, et al. . Integration of omic networks in a developmental atlas of maize. Science. (2016) 353:814–18. 10.1126/science.aag112510.1126/science.aag1125PMC580898227540173Schinnerling K, Garcia-Gonzalez P, Aguillon JC. Gene expression profiling of human monocyte-derived dendritic cells - searching for molecular regulators of tolerogenicity. Front Immunol. (2015) 6:528. 10.3389/fimmu.2015.0052810.3389/fimmu.2015.00528PMC460988026539195Gleissner CA, Shaked I, Little KM, Ley K. CXC Chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol. (2010) 184:4810–8. 10.4049/jimmunol.090136810.4049/jimmunol.0901368PMC341814020335529Vento-Tormo R, Company C, Rodriguez-Ubreva J, de la Rica L, Urquiza JM, Javierre BM, et al. . IL-4 orchestrates STAT6-mediated DNA demethylation leading to dendritic cell differentiation. Genome Biol. (2016) 17:14. 10.1186/s13059-015-0863-210.1186/s13059-015-0863-2PMC471100326758199Saeed S, Quintin J, Kerstens HHD, Rao NA, Aghajanirefah A, Matarese F, et al. . Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. (2014) 345:1251086. 10.1126/science.125108610.1126/science.1251086PMC424219425258085Broen JCA, Radstake TRDJ, Rossato M. The role of genetics and epigenetics in the pathogenesis of systemic sclerosis. Nat Rev Rheumatol. (2014) 10:671–81. 10.1038/nrrheum.2014.12810.1038/nrrheum.2014.12825136786Zhang X, Ulm A, Somineni HK, Oh S, Weirauch MT, Zhang HX, et al. . DNA methylation dynamics during ex vivo differentiation and maturation of human dendritic cells. Epigenet Chromatin. (2014) 7:21. 10.1186/1756-8935-7-2110.1186/1756-8935-7-21PMC414498725161698Altorok N, Tsou PS, Coit P, Khanna D, Sawalha AH. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann Rheum Dis. (2015) 74:1612–20. 10.1136/annrheumdis-2014-20530310.1136/annrheumdis-2014-205303PMC422499224812288Henderson J, Distler J, O'Reilly S. The role of epigenetic modifications in systemic sclerosis: a druggable target. Trends Mol Med. (2019) 25:395–411. 10.1016/j.molmed.2019.02.00110.1016/j.molmed.2019.02.00130858032Fujii H, Shimada Y, Hasegawa M, Takehara K, Sato S. Serum levels of a Th1 chemoattractant IP-10 and Th2 chemoattractants, TARC and MDC. are elevated in patients with systemic sclerosis. J Dermatol Sci. (2004) 35:43–51. 10.1016/j.jdermsci.2004.03.00110.1016/j.jdermsci.2004.03.00115194146Goode DK, Obier N, Vijayabaskar MS, Lie-A-Ling M, Lilly AJ, Hannah R, et al. . Dynamic gene regulatory networks drive hematopoietic specification and differentiation. Dev Cell. (2016) 36:572–87. 10.1016/j.devcel.2016.01.02410.1016/j.devcel.2016.01.024PMC478086726923725Ramirez RN, El-Ali NC, Mager MA, Wyman D, Conesa A, Mortazavi A. Dynamic gene regulatory networks of human myeloid differentiation. Cell Syst. (2017) 4:416–29. 10.1016/j.cels.2017.03.00510.1016/j.cels.2017.03.005PMC549037428365152Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLoS Comput Biol. (2011) 7:e1001057. 10.1371/journal.pcbi.100105710.1371/journal.pcbi.1001057PMC302425521283776Landsverk OJB, Ottesen AH, Berg-Larsen A, Appel S, Bakke O. Differential regulation of MHC II and invariant chain expression during maturation of monocyte-derived dendritic cells. J Leukocyte Biol. (2012) 91:729–37. 10.1189/jlb.031115010.1189/jlb.031115022371435Massague J. TGF beta signalling in context. Nat Rev Mol Cell Bio. (2012) 13:616–30. 10.1038/nrm343410.1038/nrm3434PMC402704922992590Xue ML, Jackson CJ. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care. (2015) 4:119–36. 10.1089/wound.2013.048510.1089/wound.2013.0485PMC435269925785236van Bon L, Cossu M, Scharstuhl A, Pennings BWC, Vonk MC, Vreman HJ, et al. . Low heme oxygenase-1 levels in patients with systemic sclerosis are associated with an altered Toll-like receptor response: another role for CXCL4? Rheumatology. (2016) 55:2066–73. 10.1093/rheumatology/kew25110.1093/rheumatology/kew25127411481Hwaiz R, Rahman M, Zhang EM, Thorlacius H. Platelet secretion of CXCL4 is Rac1-dependent and regulates neutrophil infiltration and tissue damage in septic lung damage. Brit J Pharmacol. (2015) 172:5347–59. 10.1111/bph.1332510.1111/bph.13325PMC534122226478565Bekkering S, Quintin J, Joosten LAB, van der Meer JWM, Netea MG, Riksen NP. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscl Throm Vas. (2014) 34:1731–8. 10.1161/ATVBAHA.114.30388710.1161/ATVBAHA.114.30388724903093Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. . mTOR- and HIF-1 alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. (2014) 345:1250684. 10.1126/science.125068410.1126/science.1250684PMC422623825258083Crisan TO, Cleophas MCP, Oosting M, Lemmers H, Toenhake-Dijkstra H, Netea MG, et al. . Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann Rheum Dis. (2016) 75:755–62. 10.1136/annrheumdis-2014-20656410.1136/annrheumdis-2014-20656425649144Mourits VP, Wijkmans JCHM, Joosten LAB, Netea MG. Trained immunity as a novel therapeutic strategy. Curr Opin Pharmacol. (2018) 41:52–8. 10.1016/j.coph.2018.04.00710.1016/j.coph.2018.04.00729702467LeRoy EC. Increased collagen synthesis by scleroderma skin fibroblasts in vitro: a possible defect in the regulation or activation of the scleroderma fibroblast. J Clin Invest. (1974) 54:880–9. 10.1172/JCI10782710.1172/JCI107827PMC3016274430718van Bon L, Cossu M, Loof A, Gohar F, Wittkowski H, Vonk M, et al. . Proteomic analysis of plasma identifies the Toll-like receptor agonists S100A8/A9 as a novel possible marker for systemic sclerosis phenotype. Ann Rheum Dis. (2014) 73:1585–9. 10.1136/annrheumdis-2013-20501310.1136/annrheumdis-2013-20501324718960Pacis A, Mailhot-Leonard F, Tailleux L, Randolph HE, Yotova V, Dumaine A, et al. . Gene activation precedes DNA demethylation in response to infection in human dendritic cells. Proc Natl Acad Sci USA. (2019) 116:6938–43. 10.1073/pnas.181470011610.1073/pnas.1814700116PMC645274730886108de Saint-Vis B, Vincent J, Vandenabeele S, Vanbervliet B, Pin JJ, Ait-Yahia S, et al. . A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity. (1998) 9:325–36. 10.1016/S1074-7613(00)80615-910.1016/S1074-7613(00)80615-99768752Leone DA, Peschel A, Brown M, Schachner H, Ball MJ, Gyuraszova M, et al. . Surface LAMP-2 is an endocytic receptor that diverts antigen internalized by human dendritic cells into highly immunogenic exosomes. J Immunol. (2017) 199:531–46. 10.4049/jimmunol.160126310.4049/jimmunol.160126328607115Heger L, Balk S, Luhr JJ, Heidkamp GF, Lehmann CHK, Hatscher L, et al. . CLEC10A is a specific marker for human CD1c(+) dendritic cells and enhances their toll-like receptor 7/8-induced cytokine secretion. Front Immunol. (2018) 9:744. 10.3389/fimmu.2018.0074410.3389/fimmu.2018.00744PMC593449529755453Higashi N, Fujioka K, Denda-Nagai K, Hashimoto S, Nagai S, Sato T, et al. . The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. J Biol Chem. (2002) 277:20686–93. 10.1074/jbc.M20210420010.1074/jbc.M20210420011919201Silva-Cardoso SC, Tao W, Angiolilli C, Lopes AP, Bekker CPJ, Devaprasad A, et al. CXCL4 links inflammation and fibrosis through transcriptional and epigenetic reprogramming of monocyte-derived cells. bioRxiv. (2019) 807230 10.1101/80723010.1101/807230