Aim: Understanding how spatial scale of study affects observed dispersal patterns can provide insights into spatiotemporal population dynamics, particularly in systems with significant long-distance dispersal (LDD). We aimed to investigate the dispersal gradients of two rusts of wheat with spores of similar size, mass, and shape, over multiple spatial scales. We hypothesized that a single dispersal kernel could fit the dispersal from all spatial scales well, and that it would be possible to obtain similar results in spatiotemporal increase of disease when modeling based on differing scales.

Location: Central Oregon and St. Croix Island.

Taxa: f. sp. f. sp. .

Methods: We compared empirically-derived primary disease gradients of cereal rust across three spatial scales: local (inoculum source and sampling unit = 0.0254 m, spatial extent = 1.52m) field-wide (inoculum source = 1.52 m, sampling unit = 0.305 m, and spatial extent = 91.44 m), and regional (inoculum source and sampling unit = 152 m, spatial extent = 10.7 km). We then examined whether disease spread in spatially explicit simulations depended upon the scale at which data were collected by constructing a compartmental time-step model.

Results: The three data sets could be fit well by a single inverse-power law dispersal kernel. Simulating epidemic spread at different spatial resolutions resulted in similar patterns of spatiotemporal spread. Dispersal kernel data obtained at one spatial scale can be used to represent spatiotemporal disease spread at a larger spatial scale.

Main Conclusions: Organisms spread by aerially dispersed small propagules that exhibit LDD may follow similar dispersal patterns over a several hundred- or thousand-fold expanse of spatial scale. Given that the primary mechanisms driving aerial dispersal remain constant, it may be possible to extrapolate across scales when empirical data are unavailable at a scale of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546428PMC
http://dx.doi.org/10.1111/jbi.13642DOI Listing

Publication Analysis

Top Keywords

spatial scale
12
spatial scales
12
dispersal kernel
12
inoculum source
12
sampling unit
12
spatial extent
12
spatial
11
dispersal
10
dispersal patterns
8
source sampling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!