Summertime low clouds are common in the Pacific Northwest (PNW), but spatiotemporal patterns have not been characterized. We show the first maps of low cloudiness for the western PNW and North Pacific Ocean using a 22-year satellite-derived record of monthly mean low cloudiness frequency for May through September and supplemented by airport cloud base height observations. Domain-wide cloudiness peaks in midsummer and is strongest over the Pacific. Empirical orthogonal function (EOF) analysis identified four distinct PNW spatiotemporal modes: oceanic, terrestrial highlands, coastal, and northern coastal. There is a statistically significant trend over the 22-year record toward reduced low cloudiness in the terrestrial highlands mode, with strongest declines in May and June; however, this decline is not matched in the corresponding airport records. The coastal mode is partly constrained from moving inland by topographic relief and migrates southward in late summer, retaining higher late-season low cloud frequency than the other areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540517 | PMC |
http://dx.doi.org/10.1029/2020GL088121 | DOI Listing |
Energy Build
February 2025
Department of Architectural Engineering, Penn State University, University Park, PA, USA, 16803.
Growing research on the non-visual impacts of light underscores the importance of architectural glazing systems in managing transmitted shortwave solar light and shaping indoor circadian light, vital for enhancing well-being. This study, conducted in two phases, evaluates the effectiveness of existing window properties in predicting their contribution to circadian lighting. Initially, a decision tree analysis assessed these properties and revealed that although traditional glazing metrics are not entirely accurate for circadian performance estimations, they can still be effective when supplemented with specific thresholds as rapid tools for selecting windows optimized for circadian health.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangsu Optoelectronic Functional Materials Engineering Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:
Passive radiative cooling (PRC) is an emerging sustainable technology that plays a key role for achieving the goal of carbon neutrality. However, several challenges remain for PRC materials in their practical application in building thermal management, including overcooling problems and unsatisfactory cooling efficiency caused by solar absorption and parasitic heat gains. In this work, fluorinated cellulose-based composite aerogels (FCCA) integrating thermal insulation and PRC were developed by a facile manufacturing strategy that combined phase separation and freeze-drying.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
College of Geography and Environmental Science, Northwest Normal University, Gansu Province, Lanzhou, 730000, China.
In the context of global warming and rapid urbanization, the frequency of simultaneous occurrence of extreme high temperature, ozone pollution, and particulate matter pollution has increased. However, independent and composite characterization of PM, ozone, and extreme heat pollution events has not been systematically analyzed so far. This study combines meteorological and pollutant data with the GTWR model in an attempt to reveal the patterns of independent heat days (IHD), compound PM-ozone pollution (CPOP), and composite heat-PM-ozone pollution (CHPOP).
View Article and Find Full Text PDFNanophotonics
March 2024
Department of Civil & Environmental Engineering, Princeton University, Princeton, NJ, USA.
This study explores the optical design of a daytime radiative cooler with near-ideal solar reflectance and longwave infrared (LWIR) emittance through materials selection and nanostructuring. Focusing on polymers as a materials platform, we introduce a bilayer architecture, comprising a porous poly(vinylidene fluoride-co-hexafluoropropene) (P(VdF-HFP)) topcoat that serves as a low-index LWIR emissive effective medium, over a nanofibrous, solar scattering polytetrafluoroethene underlayer. This novel configuration yields a superwhite coating with a near-ideal solar reflectance of >0.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Mechanical and Materials Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, 43000, Kajang, Malaysia.
Considering global climate change concerns, issues related to the energy crisis and technologies reliant on non-fossil renewable energy sources are in high demand. Solar energy emerges as one of the alternatives among all renewable energy resources due to its economic viability and environmental sustainability. There are various types of solar photovoltaic (PV) technologies available for commercial applications, such as organic solar cells, silicon-based solar cells, dye-sensitized solar cells, and perovskite solar cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!