Technologically relevant magnetic nanoparticles for biomedicine are rarely noninteracting single-domain nanoparticles; instead, they are often interacting, with complex physical and magnetic structures. In this paper, we present both experimental and simulated magnetic hysteresis loops of a system of magnetic nanoparticles with significant interparticle interactions and a well-defined intraparticle structure which are used for magnetic nanoparticle hyperthermia cancer treatment. Experimental measurements were made at 11 K on suspensions of magnetic nanoparticles dispersed in HO which have been frozen in a range of applied magnetic fields to tune the interparticle interactions. Micromagnetic simulations of hysteresis loops investigated the roles of particle orientation with respect to the field and of particle chaining in the shape of the hysteresis loops. In addition, we present an analysis of the magnetic anisotropy arising from the combination of magnetocrystalline and shape anisotropy, given the well-defined internal structure of the nanoparticles. We find that the shape of the experimental hysteresis loops can be explained by the internal magnetic structure, modified by the effects of interparticle interactions from chaining.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542581PMC

Publication Analysis

Top Keywords

interparticle interactions
16
magnetic nanoparticles
16
hysteresis loops
16
magnetic
11
intraparticle structure
8
magnetic hysteresis
8
nanoparticles
6
hysteresis
5
effects intraparticle
4
structure
4

Similar Publications

Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.

View Article and Find Full Text PDF

A coarse-grained model of clay colloidal aggregation and consolidation with explicit representation of the electrical double layer.

J Colloid Interface Sci

December 2024

Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address:

Knowledge Gap: The aggregation of clay minerals in liquid water exemplifies colloidal self-assembly in nature. These negatively charged aluminosilicate platelets interact through multiple mechanisms with different sensitivities to particle shape, surface charge, aqueous chemistry, and interparticle distance and exhibit complex aggregation structures. Experiments have difficulty resolving the associated colloidal assemblages at the scale of individual particles.

View Article and Find Full Text PDF

In agricultural and waste management systems, dairy manure wastewater is often recycled for irrigation. However, a key challenge lies in handling suspended solids (SS) and effectively dewatering sludge. To address this, an innovative polycationic soybean protein-based flocculant (SPI+) was developed and applied to enhance flocculation and sludge dewatering efficiency.

View Article and Find Full Text PDF

We realize a Laughlin state of two rapidly rotating fermionic atoms in an optical tweezer. By utilizing a single atom and spin resolved imaging technique, we sample the Laughlin wave function thereby revealing its distinctive features, including a vortex distribution in the relative motion, correlations in the particles' relative angle, and suppression of the interparticle interactions. Our Letter lays the foundation for atom-by-atom assembly of fractional quantum Hall states in rotating atomic gases.

View Article and Find Full Text PDF

Colloidal Nanoparticles Hold Elementary Charge in Nonpolar Solvent.

Nano Lett

January 2025

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China.

The net charge of individual nanoparticles in nonpolar solvents plays a critical role in their intrinsic properties like charge carrier lifetime, electron transport, and interparticle interactions. However, there is a long-standing belief that the oil-dispersed nanoparticles inherently possess no net charge. This work presents an approach for directly quantifying the net charge of individual nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!