Transforming the Concept of Memory Reactivation.

Trends Neurosci

Department of Psychology, University of Oregon, Eugene, OR 97403, USA. Electronic address:

Published: December 2020

AI Article Synopsis

  • Reactivation is the process where neural patterns from perceptual experiences are recalled later, indicating memory function.
  • Research shows this reactivation happens in various brain areas and aligns with how we express memories, but it may overlook the key differences between how we perceive current events versus how we remember past ones.
  • The authors suggest that memories may be viewed as altered spatial versions of perceptual experiences, highlighting the need for further investigation into these transformations and their implications.

Article Abstract

Reactivation refers to the phenomenon wherein patterns of neural activity expressed during perceptual experience are re-expressed at a later time, a putative neural marker of memory. Reactivation of perceptual content has been observed across many cortical areas and correlates with objective and subjective expressions of memory in humans. However, because reactivation emphasizes similarities between perceptual and memory-based representations, it obscures differences in how perceptual events and memories are represented. Here, we highlight recent evidence of systematic differences in how (and where) perceptual events and memories are represented in the brain. We argue that neural representations of memories are best thought of as spatially transformed versions of perceptual representations. We consider why spatial transformations occur and identify critical questions for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688497PMC
http://dx.doi.org/10.1016/j.tins.2020.09.006DOI Listing

Publication Analysis

Top Keywords

memory reactivation
8
differences perceptual
8
perceptual events
8
events memories
8
memories represented
8
perceptual
6
transforming concept
4
concept memory
4
reactivation
4
reactivation reactivation
4

Similar Publications

Background: Alzheimer's disease (AD) manifests with early spatial memory impairment and is linked to the degeneration of hippocampal circuits. Hippocampal sharp wave ripples (SWRs) are high-frequency population-burst events that coordinate the reactivation of neural assemblies (groups of neurons that become correlated in their firing patterns during learning) in post-learning sleep, which is the neural basis of memory consolidation. SWRs are reduced in the APP/PS1 mouse model of AD-like pathology.

View Article and Find Full Text PDF

Background: Excessive dietary fat is not only a risk factor for metabolic disorders but also for premature cognitive decline and Alzheimer's disease. Recent findings from our study revealed that even a few days of a high-fat diet (HFD) are sufficient to disrupt hippocampal bioenergetics, activate microglia, and induce cognitive decline in mice. We hypothesize that microglia, rather than merely responding to diet-induced damage, play a critical role in disrupting synaptic homeostasis.

View Article and Find Full Text PDF

Recently acquired memories are reactivated in the hippocampus during sleep, an initial step for their consolidation. This process is concomitant with the hippocampal reactivation of previous memories, posing the problem of how to prevent interference between older and recent, initially labile, memory traces. Theoretical work has suggested that consolidating multiple memories while minimizing interference can be achieved by randomly interleaving their reactivation.

View Article and Find Full Text PDF
Article Synopsis
  • Current kidney transplant regimens often struggle to prevent antibody-mediated rejection (ABMR) in sensitized individuals, leading to graft failure.
  • Research showed that anti-CD154 monoclonal antibody (mAb) treatment for kidney transplants in nonhuman primates was more effective at controlling rejection and post-transplant immune responses than standard tacrolimus-based therapy.
  • The anti-CD154-treated group had significantly longer survival rates, better suppression of harmful antibodies, and fewer complications post-transplant, suggesting that anti-CD154 mAbs could enhance outcomes in sensitized kidney transplant patients.
View Article and Find Full Text PDF

Molecular and genetic techniques now allow selective tagging and manipulation of the population of neurons, often referred to as "engram cells," that were active during a specific experience. One common approach to labeling these cells is to use the transgenic mouse (TetTag). In addition to tagging cells active during learning, it is common to examine the reactivation of these cells using immediate early gene (IEG) expression as an index of neural activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!