Magnetic field generation from composition gradients in inertial confinement fusion fuel.

Philos Trans A Math Phys Eng Sci

Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA.

Published: November 2020

Experimental asymmetries in fusion implosions can lead to magnetic field generation in the hot plasma core. For typical parameters, previous studies found that the magnetization Hall parameter, given by the product of the electron gyro-frequency and Coulomb collision time, can exceed one. This will affect the hydrodynamics through inhibition and deflection of the electron heat flux. The magnetic field source is the collisionless Biermann term, which arises from the Debye shielding potential in electron pressure gradients. We show that there is an additional source term due to the dependence of the Coulomb collision operator. If there are ion composition gradients, such as jets of carbon ablator mix entering the hot-spot, this source term can rapidly exceed the Biermann fields. In addition, the Biermann fields are enhanced due to the increased temperature gradients from carbon radiative cooling. With even stronger self-generated fields, heat loss to the carbon regions will be reduced, potentially reducing the negative effect of carbon mix. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 1)'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658749PMC
http://dx.doi.org/10.1098/rsta.2020.0045DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
field generation
8
composition gradients
8
coulomb collision
8
source term
8
biermann fields
8
generation composition
4
gradients
4
gradients inertial
4
inertial confinement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!