Effect of combined treatment with pulsed electromagnetic field stimulation and sclerostin monoclonal antibody on changes in bone metabolism and pedicle screw augmentation in rabbits with ovariectomy-induced osteoporosis.

Ann Palliat Med

Tongji University School of Medicine, Tongji University, Shanghai, China; Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.

Published: February 2021

Background: Both pulsed electromagnetic field (PEMF) stimulation and sclerostin monoclonal antibody are useful for treating osteoporosis, but whether the two therapies have synergistic effects on both screw fixation quality and bone metabolism of ovariectomy-induced osteoporosis has not been reported.

Methods: We used ovariectomy to create a rabbit model of postmenopausal osteoporosis. Then, specimens were fixed with pedicle screws in the L4 vertebral body. Rabbits were randomly divided into an OVX control group, PEMF group, Scl-Ab group, and PEMF+Scl-Ab group. The PEMF group was given PEMF magnetic therapy, the Scl-Ab group was administered a subcutaneous Scl-Ab injection, and the PEMF+SclAb group received both therapies. The OVX group was injected subcutaneously with the same dose of saline instead. After eight weeks of treatment, the bone metabolism index, bone mineral density (BMD), and bone microstructural, biological, and biomechanical parameters were evaluated.

Results: BMD significantly decreased six months post-ovariectomy. Compared with that of the OVX group, the BMD of the PEMF, Scl-Ab, and PEMF+Scl-Ab groups increased by 20.3%, 19.9%, and 35.0%, respectively. The maximum pulling force of pedicle screws increased by 14.0%,15.0% and 19.1%, and the maximum failure power consumption of pedicle screws increased by 27.9%, 27.2% and 33.6%, respectively; these differences were statistically significant (P<0.05). The bone metabolism index and bone microstructure parameters of the PEMF+Scl-Ab group were more optimal than those in the single treatment group.

Conclusions: Both Scl-Ab and PEMF therapy can enhance the BMD and the mechanical strength of pedicle screws in osteoporotic bones of rabbits with postmenopausal osteoporosis. However, combination of the two measures has achieved even better results, yielding potential clinical application value.

Download full-text PDF

Source
http://dx.doi.org/10.21037/apm-20-473DOI Listing

Publication Analysis

Top Keywords

bone metabolism
12
pedicle screws
12
group pemf
12
group
9
pulsed electromagnetic
8
electromagnetic field
8
stimulation sclerostin
8
sclerostin monoclonal
8
monoclonal antibody
8
ovariectomy-induced osteoporosis
8

Similar Publications

Scutellarein Inhibits Osteosarcoma Growth by Targeting the TLR4/TRAF6/NF-κB Pathway.

Drug Des Devel Ther

January 2025

Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People's Republic of China.

Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.

View Article and Find Full Text PDF

This letter discusses the potential influence of dietary boron on osteoporosis in postmenopausal women, a demographic significantly affected by this condition. Recent studies suggest that boron plays a critical role in bone health by modulating mineral metabolism and hormonal balance. Despite its potential benefits, boron is often overlooked in dietary recommendations for this group.

View Article and Find Full Text PDF

RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (mA) and 5-methylcytosine (mC), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a leading cause of pain, disability, and reduced mobility worldwide, characterized by metabolic imbalances in chondrocytes, extracellular matrix (ECM), and subchondral bone. Emerging evidence highlights the critical role of long non-coding RNAs (lncRNAs) in OA pathogenesis. This study focuses on lncRNA PTS-1, a novel lncRNA, to explore its function and regulatory mechanisms in OA progression.

View Article and Find Full Text PDF

Background: It is well established that the interaction between osteogenesis and inflammation can impact bone tissue regeneration. The use of nanoparticles to treat and alleviate inflammation at the molecular level has the potential to improve the osteogenic microenvironment and serve as a therapeutic approach.

Methods: We have synthesized new hollow cerium oxide nanoparticles and doped with cathepsin B inhibitor (CA-074Me) to create novel CeO@CA-074Me NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!