Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Materials based on petroleum-based resources have aroused widespread concern because of their environmental and healthcare footprints. Cellulose nanocrystals (CNCs) are at the cutting edge of current research because of their great promise in developing sustainable and high-performance materials. To establish a comprehensive understanding of the synergistic reinforcement effect of CNCs, we introduced a new method to fabricate all-green, transparent, and mechanically robust nanohybrid materials using CNCs in conjunction with gelatinized starch (GS) and polyhydroxyurethanes (PHUs). The synergistic interaction between the CNC skeleton and the GS/PHU network enabled us to span exceptionally stiff nanohybrids that could withstand up to 8.5 MPa tensile strength. The tunable mechanical properties and enhanced thermal stability in these nanohybrids primarily arise from the presence of dense hydroxyl groups on the CNCs' surface, which offer a robust scaffold for fortified hydrogen bonds to form with GS/PHU domains. The multiple intramolecular hydrogen bonds synergistically served as highly stable associations and concurrently facilitated energy dissipation and transferred the stress across the interfacial region. The rational design of the molecular interactions presented in this work provided increased opportunities to build nanohybrids with outstanding mechanical performance. More broadly, the insights afforded by this study not only delivered a better understanding on the molecular-level interactions in the CNC/GS/PHU system but also enriched the potential for the commercial exploration of tunable cellulosic nanohybrid materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c14525 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!