Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biofilm structure plays an important role in microalgae biofilm-based culture. This work aims to understand microalgal biofilm structures formed under different light conditions. Here, Scenedesmus obliquus was biofilm cultured under the light spectra of white, blue, green, and red, and the photoperiods of 5:5 s, 30:30 min, and 12:12 h (light : dark period). Biofilms were observed with confocal laser scanning microscopes and profilometry, then the porosity and roughness of biofilm were determined. We found that cells under white light formed a heterogeneous biofilm with many voids, high porosity, and roughness. While under red and blue lights, cells formed homogeneous biofilms with low porosity. Biofilm structures formed under different photoperiods were different. The mechanism of forming different biofilm structures under different light conditions was interpreted from the aspect of cell-cell interactions. Moreover, the results revealed that biomass accumulation increased with the increasing biofilm porosity due to the high effective diffusion coefficient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.09.057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!