Biomass-based sulfonated carbon catalyst (SCC) was prepared from corncob via direct sulfuric acid carbonization-sulfonation treatment. Central composite design was used to evaluate temperature and time for optimizing SCC yield and sulfonic acid (SOH) density. The SOH groups were successfully introduced to the SCC as evidenced by FTIR and sulfur analysis. Numerical optimization results showed that 100 °C and 5.78 h are the optimal conditions for maximizing yield (61.24%) and SOH density (1.1408 mmol/g). The highest ethanol organosolv lignin (EOL) yield of 63.56% with a substrate yield of 39.08% was achieved at 20% SCC loading in the ethanol organosolv delignification of lignocellulosic biomass. The FTIR spectra of the isolated lignin revealed typical features of G-lignin, indicating that no drastic changes took place in the lignin structure during the process. This study developed a simple one-step preparation method of SCC, which was successfully used as a catalyst in an organosolv delignification of biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2020.124194 | DOI Listing |
Int J Biol Macromol
December 2024
Core Facility Center "Arktika" Northern (Arctic) Federal University named after M.V. Lomonosov, Northern Dvina Emb., 17, Arkhangelsk 163002, Russia. Electronic address:
The widespread development of lignin valorization is hindered by a number of challenges. In particular, efficient valorization necessitates comprehensive characterization of initial lignins. In this work, the structural features of lignins from birch wood (Bétula péndula), obtained by various methods of hard and mild fractionation of biomass: hydrolysis (Hyd-L), kraft (Kraft-L), soda (Soda-L), and soda-ethanol (SodaEt-L) processes, as well as organosolv processes with dioxane (MWL, DL) and dimethyl sulfoxide (DMSO-L) have been comprehensively studied.
View Article and Find Full Text PDFACS Omega
September 2024
US Department of Agriculture-Forest Service-Forest Products Laboratory, Madison, Wisconsin 53726, United States.
This study aimed to investigate the intrinsic efficiency of renewable alcohols, applied under autocatalytic conditions, for removing lignin from aspen and hot-water-extracted aspen while substantially preserving the lignin structure so as to facilitate various valorization strategies. Ethylene glycol (EG), propylene glycol (PG), 1,4-butanediol (BDO), ethanol (EtOH), and tetrahydrofurfuryl alcohol (THFA) were evaluated based on their lignin solubilization ability, expressed as the relative energy difference (RED) following the principles of the Hansen solubility theory. The findings indicate that alcohols with a higher lignin solubilization potential lead to increased delignification, almost 90%, and produce a lignin with a higher content of β-O-4 bonds, up to 68% of those found in aspen milled wood lignin, thereby indicating their potential for valorization through depolymerization.
View Article and Find Full Text PDFInt J Biol Macromol
September 2024
Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan. Electronic address:
Sci Total Environ
November 2024
Environmental Engineering and Biotechnology Team, Laboratory of Mechanics, Process, Energy and Environment, National School of Applied Sciences, IBN Zohr University, Agadir, Morocco.
Anaerobic digestion (AD) of lignocellulosic wastes (LW) has garnered substantial interest because of its notable energy and nutrient recovery, along with its potential for reducing greenhouse gas emissions. However, the LW is resistant to degradation, and its hydrolysis typically requires harsh conditions, hence the need for a pretreatment. Conducting a life cycle assessment (LCA) to evaluate the pretreatment of LW is an effective way to assess the environmental impacts associated with various pretreatment methods.
View Article and Find Full Text PDFACS Sustain Resour Manag
July 2024
Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!