A recent study on our metal-dithiocarbamato complexes pointed out the antiproliferative properties and the druglikeness of some new patented derivatives. In this work, the best compounds have been encapsulated in micellar nanocarriers, being also carbohydrate-functionalized on their hydrophilic surface to investigate the possibility of a cancer-selective delivery. In particular, the nonionic block copolymer Pluronic® F127 (PF127) has been chemically modified with sugars and the derivatives characterized by means of NMR spectroscopy and FT-IR spectrophotometry. Then, the two selected complexes (β-[Ru(PipeDTC)]Cl (PipeDTC = piperidine dithiocarbamate) and [Cu(ProOMeDTC)] (ProOMeDTC = L-proline methyl ester dithiocarbamate)), have been loaded into the hydrophobic core of PF127 micelles and cancer-targeting counterparts. These nanoformulations have been studied for their dimensions (DLS, TEM) and stability, and tested for their cytotoxicity against aggressive human cancer cell lines. The in vitro results were paralleled with mechanistic studies through Confocal Laser Scanning Microscopy and xCELLigence analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2020.111259 | DOI Listing |
Anal Chem
January 2025
Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China.
The development of long-wavelength near-infrared II (NIR-II, 900-1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior imaging capabilities, a donor-acceptor-donor (D-A-D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named and were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively.
View Article and Find Full Text PDFRSC Adv
January 2025
The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.
We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.
View Article and Find Full Text PDFJ Membr Biol
January 2025
Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India.
Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
The conformation of a series of zero-generation polyamidoamine dendrimers end-labeled with four 1-pyrene-butyroyl, -hexanoyl, -octanoyl, -decanoyl, and -dodecanoyl derivatives, referred to as the PyCX-PAMAM-G0 samples with = 4, 6, 8, 10, and 12, respectively, was characterized in ,-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and aqueous solutions of 50 mM sodium dodecyl sulfate (SDS) or 50 mM dodecyltrimethylammonium bromide (DTAB). The conformation of the PyCX-PAMAM-G0 samples was determined from the global model-free analysis (MFA) of the fluorescence decays, which yielded the average rate constant (⟨⟩) for pyrene excimer formation (PEF) between an excited and a ground-state pyrenyl labels, with ⟨⟩ being proportional to the local concentration ([Py]) of the pyrenyl labels within the macromolecular volume; ⟨⟩-vs-[Py] plots yielded straight lines passing through the origin in DMF and DMSO, demonstrating that the internal segments of the dendrimers obeyed Gaussian statistics in these two solvents. In aqueous surfactant solutions, the hydrophobic pyrenyl labels induced the interactions of the PyCX-PAMAM-G0 dendrimers with the SDS and DTAB micelles.
View Article and Find Full Text PDFMol Biol Cell
December 2024
Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada, N6A 5C1.
Cells counter accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER) through activation of the Unfolded Protein Response (UPR). Small molecules termed chemical chaperones can promote protein folding to alleviate ER stress. The bile acid tauroursodeoxycholic acid (TUDCA), has been described as a chemical chaperone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!