Gliflozins (canagliflozin, dapagliflozin and empagliflozin) are the newest anti-hyperglycemic class and have offered cardiovascular and renal benefits. Because platelets are involved in the atherothrombosis process, this study is aimed to evaluate the direct effect of gliflozins on platelet reactivity. Platelet-rich plasma (PRP) or washed platelets (WP) were obtained from healthy volunteers. Aggregation, flow cytometry for glycoprotein IIb/IIIa, cyclic nucleotides and intracellular calcium levels, Western blot, thromboxane B (TXB) measurement and COX-1 activity were performed in the presence of gliflozins (1-30 μM) alone or in combination with sodium nitroprusside (SNP, 10 or 100 nM) + iloprost (ILO, 0.1 or 1 nM). SGLT2 protein is not expressed on human platelets. Gliflozins produced little inhibitory effect in agonists-induced aggregation and this effect was greatly potentiated by ~10-fold in the presence of SNP + ILO, accompanied by lower levels of TXB (58.1 ± 5.1%, 47.1 ± 7.2% and 43.4 ± 9.2% inhibition for canagliflozin, dapagliflozin and empagliflozin, respectively). The activity of COX-1 was not affected by gliflozins. Collagen increased Ca levels and α(IIb)β(3) activation, both of which were significantly reduced by gliflozins + SNP + ILO. The intracellular levels of cAMP and cGMP and the protein expression of p-VASPSer157 and p-VASPSer239 were not increased by gliflozins while the expression of the serine-threonine kinase, AktSer473 was markedly reduced. Our results showed that the antiplatelet activity of gliflozins were greatly enhanced by nitric oxide and prostacyclin, thus suggesting that the cardiovascular protection seen by this class of drugs could be in part due to platelet inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2020.114276DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
oxide prostacyclin
8
canagliflozin dapagliflozin
8
dapagliflozin empagliflozin
8
gliflozins
7
sodium-glucose cotransporter-2
4
cotransporter-2 sglt2
4
sglt2 inhibitors
4
inhibitors synergize
4
synergize nitric
4

Similar Publications

A preclinical study on effect of betanin on sodium fluoride induced hepatorenal toxicity in wistar rats.

J Complement Integr Med

January 2025

Department of Basic Medical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Background: Excessive fluoride exposure leads to increased oxidative stress and lipid peroxidation, causing harmful effects on the metabolic organs in the human body. Betanin, a pigment obtained from beetroot, is seen to have powerful anti-inflammatory and antioxidant. The study was conducted to determine the role of betanin in fluoride induced hepato-renal toxicity in Wistar rats.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

PCM Consulting, Pathways Connectivity Maps Inc., Mountain View, CA, USA.

Background: High-throughput assays have attracted significant attention in Alzheimer's Disease (AD) research, especially for enabling rapid diagnostics screening for factors at the molecular level contributing to the disease recurrence. With advances in laboratory automation, there is a growing need for quality pre-clinical data. Assays such as Microarrays, Proteomics, or AI are all dependent on high-quality input data that serve as a starting point.

View Article and Find Full Text PDF

Background: Stiffening of the large arteries is a hallmark feature of vascular aging and is associated with cognitive impairment and Alzheimer's disease pathology. Increased large artery stiffness leads to higher-than-normal pulse pressure in the cerebral circulation, damaging endothelial cells. It is known that short-term exposure to stiffer large arteries causes cerebral artery endothelial dysfunction and hypoperfusion in young mice.

View Article and Find Full Text PDF

Background: Nitric oxide (NO) is involved in synaptic transmission and cerebral plasticity, playing a role in the memory process. However, in states of brain inflammation, hypoxia, or ischemia, there is induction of inducible nitric oxide synthase (iNOS) expression by astrocytes and pyramidal cells in the brain. Under conditions of chronic activation, there is a decoupling of iNOS dimers, leading to a massive generation of superoxide anion and peroxynitrite, O2.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Ohio State University, Columbus, OH, USA.

Background: Microglia, the innate immune cells of the brain, are a principal player in Alzheimer's Disease (AD) pathogenesis. Their surveillance of the brain leads to interaction with the protein aggregates that drive AD pathogenesis, most notably Amyloid Beta (Aβ). Aβ can elicit attempts from microglia to clear and degrade it using phagocytic machinery, spurring damaging neuroinflammation in the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!