Hearing loss is associated with changes at the peripheral, subcortical, and cortical auditory stages. Research often focuses on these stages in isolation, but peripheral damage has cascading effects on central processing, and different stages are interconnected through extensive feedforward and feedback projections. Accordingly, assessment of the entire auditory system is needed to understand auditory pathology. Using a novel stimulus paired with electroencephalography in young, normal-hearing adults, we assess neural function at multiple stages of the auditory pathway simultaneously. We employ click trains that repeatedly accelerate then decelerate (3.5 Hz click-rate-modulation) introducing varying inter-click-intervals (4 to 40 ms). We measured the amplitude of cortical potentials, and the latencies and amplitudes of Waves III and V of the auditory brainstem response (ABR), to clicks as a function of preceding inter-click-interval. This allowed us to assess cortical processing of click-rate-modulation, as well as adaptation and neural recovery time in subcortical structures (probably cochlear nuclei and inferior colliculi). Subcortical adaptation to inter-click intervals was reflected in longer latencies. Cortical responses to the 3.5 Hz modulation included phase-locking, probably originating from auditory cortex, and sustained activity likely originating from higher-level cortices. We did not observe any correlations between subcortical and cortical responses. By recording neural responses from different stages of the auditory system simultaneously, we can study functional relationships among levels of the auditory system, which may provide a new and helpful window on hearing and hearing impairment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2020.108080 | DOI Listing |
Language is a sophisticated cognitive skill that relies on the coordinated activity of cerebral cortex. Acquiring a second language creates intricate modifications in brain connectivity. Although considerable studies have evaluated the impact of second language acquisition on brain networks in adulthood, the results regarding the ultimate form of adaptive plasticity remain inconsistent within the adult population.
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.
Purpose: Differentiating between Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be challenging due to overlapping cognitive and behavioral manifestations. Evidence regarding non-invasive and early-stage biomarkers remains limited. Our aim was to identify retinal biomarkers for the risk of AD and FTD in populations without dementia and explore underlying brain structural mechanisms.
View Article and Find Full Text PDFPsychotic disorders, such as schizophrenia and bipolar disorder, pose significant diagnostic challenges with major implications on mental health. The measures of resting-state fMRI spatiotemporal complexity offer a powerful tool for identifying irregularities in brain activity. To capture global brain connectivity, we employed information-theoretic metrics, overcoming the limitations of pairwise correlation analysis approaches.
View Article and Find Full Text PDFBackground: Metabolic processes form the basis of the development, functioning and maintenance of the brain. Despite accumulating evidence of the vital role of metabolism in brain health, no study to date has comprehensively investigated the link between circulating markers of metabolic activity and in vivo brain morphology in the general population.
Methods: We performed uni- and multivariate regression on metabolomics and MRI data from 24,940 UK Biobank participants, to estimate the individual and combined associations of 249 circulating metabolic markers with 91 measures of global and regional cortical thickness, surface area and subcortical volume.
Background: Writer's cramp (WC) dystonia is an involuntary movement disorder with distributed abnormalities in the brain's motor network. Prior studies established the potential for repetitive transcranial magnetic stimulation (rTMS) to either premotor cortex (PMC) or primary somatosensory cortex (PSC) to modify symptoms. However, clinical effects have been modest with limited understanding of the neural mechanisms hindering therapeutic advancement of this promising approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!