AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that is a key regulator of energy balance at both the cellular and whole-body level. AMPK acts to stimulate ATP production and reduce ATP consumption when cellular ATP levels fall, thereby normalizing energy balance. Given the central role of AMPK in cellular carbohydrate and lipid metabolism, AMPK activation has been proposed to be a therapeutic target for conditions associated with dysfunctional nutrient metabolism including obesity, type 2 diabetes, hepatic steatosis, cardiovascular diseases and cancer. One way by which increased ATP production can be achieved is by increasing the supply of nutrient substrates. In the 1990s, AMPK activation was demonstrated to stimulate glucose uptake in striated muscle, thereby improving substrate supply for ATP production. Subsequently AMPK activation was postulated to underlie the increase in glucose uptake that occurs during muscle contraction. More recently, however, several lines of evidence have demonstrated that AMPK activation is unlikely to be required for contraction-mediated glucose uptake. Furthermore, despite the importance of AMPK in cellular and whole-body metabolism, far fewer studies have investigated either the role of AMPK in glucose uptake by non-muscle tissues or whether AMPK regulates the uptake of fatty acids. In the present review, we discuss the role of AMPK in nutrient uptake by tissues, focusing on glucose uptake out with muscle and fatty acid uptake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2020.109807 | DOI Listing |
Int J Radiat Biol
January 2025
Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.
View Article and Find Full Text PDFCells
January 2025
Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored.
View Article and Find Full Text PDFIndian J Nucl Med
November 2024
Department of General Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India.
Background: Distribution and quantification of extra-pulmonary tuberculosis and elicitation of response antitubercular therapy via F18-Fluorodeoxyglucose Positron Emission-based Tomography/ Computed Tomography(F18-FDG PET/CT).
Materials And Methods: This was a prospective Pilot study. In this study 30 patients of age between 15 to 36 years(mean 26.
J Cent Nerv Syst Dis
January 2025
School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!