Recessive mutations in FRAS1-related extracellular matrix 1 (FREM1) are associated with two rare genetic disorders, Manitoba-oculo-tricho-anal (MOTA) and bifid nose with or without anorectal and renal anomalies (BNAR). Fraser syndrome is a more severe disorder that shows phenotypic overlap with both MOTA and anorectal and renal anomalies and results from mutations in FRAS1, FREM2 and GRIP1. Heterozygous missense mutations in FREM1 were reported in association with isolated trigonocephaly with dominant inheritance and incomplete penetrance. Moreover, large deletions encompassing FREM1 have been reported in association with a syndromic form of trigonocephaly and were designated as trigonocephaly type 2. Trigonocephaly results from premature closure of the metopic suture and typically manifests as a form of nonsyndromic craniosynostosis. We report on 20 patients evaluated for developmental delay and without abnormal metopic suture. Chromosomal microarray analysis revealed heterozygous FREM1 deletions in 18 patients and in 4 phenotypically normal parents. Two patients were diagnosed with MOTA and had homozygous FREM1 deletions. Therefore, although our results are consistent with the previous reports of homozygous deletions causing MOTA, we report no association between heterozygous FREM1 deletions and trigonocephaly in this cohort.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MCD.0000000000000351 | DOI Listing |
Eur J Hum Genet
September 2024
Division of Genetics and Genomic Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, 63110, USA.
Using a new analytic method ("unique non-overlapping region" (UNOR) analysis), we characterized the genotypes and phenotypes of a large cohort of individuals diagnosed with chromosome 9p deletion syndrome (9PMS) and defined critical genomic regions. We extracted phenotypic information from 48 individuals with 9PMS from medical records and used a guided interview with caregivers to clarify ambiguities. Using high-resolution whole-genome sequencing for breakpoint definition, we aligned deletions and drew virtual breakpoints to obtain UNORs associated with phenotypic characteristics.
View Article and Find Full Text PDFJ Cell Sci
October 2022
Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
Nephron development proceeds with reciprocal interactions among three layers: nephron progenitors (NPs), ureteric buds and stromal progenitors (SPs). We found that Foxc1 and Foxc2 (Foxc1/2) are expressed in NPs and SPs. Systemic deletion of Foxc1/2 2 days after the onset of metanephros development (embryonic day 13.
View Article and Find Full Text PDFClin Dysmorphol
April 2021
Institute of Human Genetics, University Hospital Magdeburg Leipziger Str. 44 39120 Magdeburg Germany.
Recessive mutations in FRAS1-related extracellular matrix 1 (FREM1) are associated with two rare genetic disorders, Manitoba-oculo-tricho-anal (MOTA) and bifid nose with or without anorectal and renal anomalies (BNAR). Fraser syndrome is a more severe disorder that shows phenotypic overlap with both MOTA and anorectal and renal anomalies and results from mutations in FRAS1, FREM2 and GRIP1. Heterozygous missense mutations in FREM1 were reported in association with isolated trigonocephaly with dominant inheritance and incomplete penetrance.
View Article and Find Full Text PDFAm J Med Genet A
December 2020
Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.
Constitutional ring chromosome 9, r(9), is a rare chromosomal disorder. Cytogenomic analyses by karyotyping, array comparative genomic hybridization (aCGH) and whole genome sequencing (WGS) were performed in a patient of r(9). Karyotyping detected a mosaic pattern of r(9) and monosomy 9 in 83% and 17% of cells, respectively.
View Article and Find Full Text PDFHum Mol Genet
July 2018
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China.
Cryptophthalmos (CO, MIM: 123570) is rare congenital anomalies of eyelid formation, which can occur alone or in combination with multiple congenital anomalies as part of Fraser syndrome (FS) or Manitoba Oculotrichoanal syndrome. Causal mutations have been identified for these syndromes but not in the isolated cases. Here, we described two patients from two unrelated Chinese families: one with unilateral isolated CO, while the other with unilateral CO and renal agenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!