This article focuses on the problem of maximal compliance design of a hyper-elastic solid with the optimal design of human skin grafts as the application in mind. The solution method is a phasefield-based topology optimization method that supposes multiple local phasefields and a minimum distance constraint in order to prevent the phasefields from merging. Consequently, structurally disintegrating solutions such as by the coalescence of voids can be prevented. The method is used to find an optimal graft meshing pattern for a sample that is subjected to a biaxial extension of up to 150%, which corresponds to an expansion ratio of 1 : 2.25. Three prospective unitcell solutions that exhibit meta-material behavior are proposed for a periodic graft pattern. The results are a step toward improving the skin graft meshing efficiency. This work does not cover experimental validation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cnm.3405 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!