Ambulatory monitoring is increasingly important for cardiovascular care but is often limited by the unpredictability of cardiovascular events, the intermittent nature of ambulatory monitors and the variable clinical significance of recorded data in patients. Technological advances in computing have led to the introduction of novel physiological biosignals that can increase the frequency at which abnormalities in cardiovascular parameters can be detected, making expert-level, automated diagnosis a reality. However, use of these biosignals for diagnosis also raises numerous concerns related to accuracy and actionability within clinical guidelines, in addition to medico-legal and ethical issues. Analytical methods such as machine learning can potentially increase the accuracy and improve the actionability of device-based diagnoses. Coupled with interoperability of data to widen access to all stakeholders, seamless connectivity (an internet of things) and maintenance of anonymity, this approach could ultimately facilitate near-real-time diagnosis and therapy. These tools are increasingly recognized by regulatory agencies and professional medical societies, but several technical and ethical issues remain. In this Review, we describe the current state of cardiovascular monitoring along the continuum from biosignal acquisition to the identification of novel biosensors and the development of analytical techniques and ultimately to regulatory and ethical issues. Furthermore, we outline new paradigms for cardiovascular monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545156 | PMC |
http://dx.doi.org/10.1038/s41569-020-00445-9 | DOI Listing |
Stem Cell Rev Rep
January 2025
Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, 0084, South Africa.
Int J Comput Assist Radiol Surg
January 2025
Department of Orthopaedic Surgery, Ehime University Graduate School of Medicine, Matsuyama, Japan.
Purpose: Identifying muscles linked to postoperative physical function can guide protocols to enhance early recovery following total hip arthroplasty (THA). This study aimed to evaluate the association of preoperative pelvic and thigh muscle volume and quality with early physical function after THA in patients with unilateral hip osteoarthritis (HOA).
Methods: Preoperative Computed tomography (CT) images of 61 patients (eight males and 53 females) with HOA were analyzed.
Hepatol Int
January 2025
National Clinical Research Center for Digestive Disease, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Background: Our previous research demonstrated that growth differentiation factor 15 (GDF15) exhibited superior predictive capability for metabolic dysfunction-associated steatohepatitis (MASH) development with an AUC of 0.86 at 10 years before disease diagnosis. However, the specific pathways and molecular mechanisms associated with GDF15 expression during MASH development remain to be fully investigated in humans.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
Department of Critical Care Medicine, The Qujing NO.1 People's Hospital, Qujing, 655000, Yunnan, China.
Melatonin (MEL), functioning as a circulating hormone, is important for the regulation of ferroptosis in different health scenarios and acts as a crucial antioxidant in cardiovascular diseases. However, its specific function in ferroptosis related to myocardial ischemia-reperfusion injury (MIRI) remains to be fully elucidated. In our research, we utilized a rat model of MIRI induced by coronary artery ligation, along with a cell model subjected to hypoxia/reoxygenation (H/R).
View Article and Find Full Text PDFMem Cognit
January 2025
Department of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01062, Dresden, Germany.
Theorists across all fields of psychology consider goals crucial for human action control. Still, the question of how precisely goals are represented in the cognitive system is rarely addressed. Here, we explore the idea that goals are represented as distributed patterns of activation that coexist within continuous mental spaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!