Rodents perceive the emotional states of conspecifics using vision. In the present study, we demonstrated that exposure to the video-recorded distress of conspecifics induces stress responses in male C57BL/6J mice. A single exposure to a video-recorded scene of the social defeat stress (SDS) increased plasma corticosterone levels in these mice. This physiological change was suppressed by blocking the visual information, suggesting that vision plays a crucial role in inducing stress responses. Furthermore, after exposure to the video, there were increased numbers of c-Fos-positive neurons in the anterior cingulate cortex and other brain areas that are associated with the negative valence and empathy systems, but not in the regions related to the pain signaling. In addition, repeated exposure to SDS videos induced an apparent reduction in reward sensitivity in the sucrose preference test, but did not affect avoidance behaviour in the social interaction test or immobility behaviour in the forced swim test. Reduced reward sensitivity in mice reflects anhedonia, which is a core symptom of depression in humans. Our video SDS model therefore provides a unique opportunity to not only understand the mechanisms underlying stress-induced anhedonia, but also to screen effective candidate molecules for stress-related disorders with greater reproducibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547068 | PMC |
http://dx.doi.org/10.1038/s41598-020-73988-z | DOI Listing |
Acta Neuropsychiatr
January 2025
Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Objective: Ultrasonic vocalisations (USVs) emitted by rats may reflect affective states. Specifically, 50 kHz calls emitted during juvenile playing are associated with positive affect. Given that depression is characterised by profound alterations in this domain, we proposed that USV calls may configure a suitable tool for assessing depressive-like states.
View Article and Find Full Text PDFBMC Neurosci
January 2025
National Brain Research Centre, Manesar, Gurugram, 122052, Haryana, India.
Delta-opioid receptors (δ-ORs) are known to be involved in associative learning and modulating motivational states. We wanted to study if they were also involved in naturally-occurring reinforcement learning behaviors such as vocal learning, using the zebra finch model system. Zebra finches learn to vocalize early in development and song learning in males is affected by factors such as the social environment and internal reward, both of which are modulated by endogenous opioids.
View Article and Find Full Text PDFJ Behav Addict
January 2025
1Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China.
Aims: This study aimed to explore the brain activity characteristics of individuals with Internet Gaming Disorder (IGD) during mobile gameplay, focusing on neural responses to positive and negative game events. The findings may enhance our understanding of the neural mechanisms underlying IGD.
Methods: Functional near-infrared spectroscopy (fNIRS) was employed to measure hemodynamic responses (HbO/HbR) in the prefrontal cortex of both IGD participants and recreational gaming users (RGU), during solo and multiplayer mobile gameplay.
Pain
January 2025
Integrative Spinal Research Group, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
Recent evidence highlights that monetary rewards can increase the precision at which healthy human volunteers can detect small changes in the intensity of thermal noxious stimuli, contradicting the idea that rewards exert a broad inhibiting influence on pain perception. This effect was stronger with contingent rewards compared with noncontingent rewards, suggesting a successful learning process. In the present study, we implemented a model comparison approach that aimed to improve our understanding of the mechanisms that underlie thermal noxious discrimination in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!