Biochemical and medical literature establish lactate as a fundamental biomarker that can shed light on the energy consumption dynamics of the body at cellular and physiological levels. It is therefore, not surprising that it has been linked to many critical conditions ranging from the morbidity and mortality of critically ill patients to the diagnosis and prognosis of acute ischemic stroke, septic shock, lung injuries, insulin resistance in diabetic patients, and cancer. Currently, the gold standard for the measurement of lactate requires blood sampling. The invasive and costly nature of this procedure severely limits its application outside intensive care units. Optical sensors can provide a non-invasive, inexpensive, easy-to-use, continuous alternative to blood sampling. Previous efforts to achieve this have shown significant potential, but have been inconclusive. A measure that has been previously overlooked in this context, is the use of variable selection methods to identify regions of the optical spectrum that are most sensitive to and representative of the concentration of lactate. In this study, several wavelength selection methods are investigated and a new genetic algorithm-based wavelength selection method is proposed. This study shows that the development of more accurate and parsimonious models for optical estimation of lactate is possible. Unlike many existing methods, the proposed method does not impose additional locality constraints on the spectral features and therefore helps provide a much more granular interpretation of wavelength importance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547666 | PMC |
http://dx.doi.org/10.1038/s41598-020-73406-4 | DOI Listing |
Chemistry
January 2025
The University of Electro-Communications: Denki Tsushin Daigaku, Department of Engineering Science, JAPAN.
(6,5)-enriched single-walled carbon nanotubes (SWCNTs) were reductively arylated using sodium naphthalenide and monosubstituted and disubstituted iodobenzene derivatives to control their photoluminescence (PL) properties. In the reactions with substituted iodobenzenes, the degree of functionalization was influenced by the substituents on the aryl groups depending on their position, which allowed us to realize control of the PL intensity. The substituents at the 2-position and methyl groups at the 3,5-positions of the phenyl group respectively increased the E11** PL and E11* PL selectivity at ~1230 and ~1100 nm.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Nazarbayev University, Astana 010000, Kazakhstan.
Antibiotic contamination of water bodies has become a serious problem, which leads to aquatic life pollution and the development of antibiotic resistance. Hence, development of highly sensitive and selective optical sensors for antibiotic detection is at the forefront of scientific research. In this study, we present the synthesis of europium-doped carbon dots (Eu-CDs) and excitation wavelength optimization for the highly sensitive detection of tetracycline (TC) and TC-family antibiotics in water.
View Article and Find Full Text PDFLasers Med Sci
January 2025
International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
Bone regeneration is a complex process influenced by inflammation and pathological conditions. Efforts to enhance this process include chemical and physical interventions, with PBMT therapy showing promise in improving bone regeneration. Despite conflicting findings in existing literature, this review aims to synthesize clinical evidence on using therapy (PBMT) in bone regeneration and explore its potential clinical applications.
View Article and Find Full Text PDFSmall
January 2025
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China.
Narrowband photodetection with selective light detection in ultraviolet (UV) range is particularly pronounced in specialized such as targeted wavelength imaging and UV-phototherapy. In contrast to conventional strategies, ferroelectric materials with pronounced bulk photovoltaic effect (BPVE) provide a novel asymmetric carrier generation concept for achieving filterless spectrally selective photodetection. Herein, for the first time, the realization of self-powered filterless narrowband UV photodetection is demonstrated in bulk single crystals of a newly developed halide perovskite ferroelectric, 2FEAEAPbCl (2FEEPC), which exhibits a wide bandgap of 3.
View Article and Find Full Text PDFChemistry
January 2025
National Chi Nan University, Department of Applied Chemistry, TAIWAN.
Three fluorescent Zn coordaintion polymers (CPs) have been synthesized from the reactions of Zn(NO3)2∙6H2O, benzene-1,4-dicarboxylic acid (1,4-H2bdc), and angular carbazole-derived bispyridyl ligands (Cz-3,6-bpy or Cz-Pr-3,6-bpy). CPs 1-3 all adopt similar two-dimensional (2D) ring-and-rod layer structures, described as topologically 4-connected 2∙65 nets where the Zn(II) centers act as 4-connected nodes. CPs 1 and 2 are a pair of solvent-mediated supramolecular isomers where the former shows a two-fold interlocked 2D → 2D polyrotaxane-like entangled net and the latter reveals a four-fold interpenetrated 2D → 3D polyrotaxane entanglement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!