A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. | LitMetric

AI Article Synopsis

  • - Six known pathways for carbon monoxide (CO) fixation exist in microorganisms, with D. desulfuricans using a new, seventh pathway involving hydrogen and sulfate as energy sources.
  • - This reductive glycine pathway converts CO to formate, which is then transformed into glycine and finally into acetyl-CoA, eventually generating pyruvate.
  • - The pathway's efficiency in generating ATP highlights the role of ammonia, as the growth rate of D. desulfuricans is affected by ammonia concentration, showcasing its autotrophic capabilities.

Article Abstract

Six CO fixation pathways are known to operate in photoautotrophic and chemoautotrophic microorganisms. Here, we describe chemolithoautotrophic growth of the sulphate-reducing bacterium Desulfovibrio desulfuricans (strain G11) with hydrogen and sulphate as energy substrates. Genomic, transcriptomic, proteomic and metabolomic analyses reveal that D. desulfuricans assimilates CO via the reductive glycine pathway, a seventh CO fixation pathway. In this pathway, CO is first reduced to formate, which is reduced and condensed with a second CO to generate glycine. Glycine is further reduced in D. desulfuricans by glycine reductase to acetyl-P, and then to acetyl-CoA, which is condensed with another CO to form pyruvate. Ammonia is involved in the operation of the pathway, which is reflected in the dependence of the autotrophic growth rate on the ammonia concentration. Our study demonstrates microbial autotrophic growth fully supported by this highly ATP-efficient CO fixation pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547702PMC
http://dx.doi.org/10.1038/s41467-020-18906-7DOI Listing

Publication Analysis

Top Keywords

autotrophic growth
12
reductive glycine
8
glycine pathway
8
desulfovibrio desulfuricans
8
fixation pathway
8
pathway
6
pathway allows
4
allows autotrophic
4
growth
4
growth desulfovibrio
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!