The ability to continuously grow and regenerate the gills throughout life is a remarkable property of fish and amphibians. Considering that gill regeneration was first described over one century ago, it is surprising that the underlying mechanisms of cell and tissue replacement in the gills remain poorly understood. By contrast, the mammalian lung is a largely quiescent organ in adults but is capable of facultative regeneration following injury. In the course of the past decade, it has been recognized that lungs contain a population of stem or progenitor cells with an extensive ability to restore tissue; however, despite recent advances in regenerative biology of the lung, the signaling pathways that underlie regeneration are poorly understood. In this Review, we discuss the common evolutionary and embryological origins shared by gills and mammalian lungs. These are evident in homologies in tissue structure, cell populations, cellular function and genetic pathways. An integration of the literature on gill and lung regeneration in vertebrates is presented using a comparative approach in order to outline the challenges that remain in these areas, and to highlight the importance of using aquatic vertebrates as model organisms. The study of gill regeneration in fish and amphibians, which have a high regenerative potential and for which genetic tools are widely available, represents a unique opportunity to uncover common signaling mechanisms that may be important for regeneration of respiratory organs in all vertebrates. This may lead to new advances in tissue repair following lung disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.226076 | DOI Listing |
Open Biol
November 2024
CABD (Andalusian Center for Developmental Biology), CSIC/Universidad Pablo de Olavide/Junta de Andalucía, Seville 41013, Spain.
The capacity to regenerate lost organs is widespread among animals, and yet the number of species in which regeneration has been experimentally probed using molecular and functional assays is very small. This is also the case for insects, for which we still lack a complete picture of their regeneration mechanisms and the extent of their conservation. Here, we contribute to filling this gap by investigating regeneration in the mayfly .
View Article and Find Full Text PDFOpen Vet J
October 2024
Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt.
Background: The global demand for fish and fish products has increased due to population growth and healthier food choices. However, bacterial infections caused by Aeromonas species pose a challenge. Antibiotics are crucial for disease control, but multidrug resistance is a global concern.
View Article and Find Full Text PDFClin Oral Implants Res
January 2025
Barts and the London School of Medicine and Dentistry, Institute of Dentistry, Queen Mary University of London, London, UK.
Fish Shellfish Immunol
November 2024
Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:
Thioredoxin domain-containing protein 12 (TXNDC12) is a member of the thioredoxin-like superfamily that contributes to various thiol-dependent metabolic activities in all living organisms. In this research, the TXNDC12 gene from yellowtail clownfish (Amphiprion clarkii) was structurally characterized using in silico tools, assessed for immunological expression, and evaluated for biological activity using recombinant protein and cellular overexpression. The deduced coding sequence of AcTXNDC12 comprised a 522-bp nucleotide, encoding 173 amino acids with a predicted molecular mass of 19.
View Article and Find Full Text PDFNature
July 2024
Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!