From Acetate to Bio-Based Products: Underexploited Potential for Industrial Biotechnology.

Trends Biotechnol

University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany.

Published: April 2021

Currently, most biotechnological products are based on microbial conversion of carbohydrate substrates that are predominantly generated from sugar- or starch-containing plants. However, direct competitive uses of these feedstocks in the food and feed industry represent a dilemma, so using alternative carbon sources has become increasingly important in industrial biotechnology. A promising alternative carbon source that may be generated in substantial amounts from lignocellulosic biomass and C1 gases is acetate. This review discusses the underexploited potential of acetate to become a next-generation platform substrate in future industrial biotechnology and summarizes alternative sources and routes for acetate production. Furthermore, biotechnological aspects of microbial acetate utilization and the state of the art of biotechnological acetate conversion into value-added bioproducts are highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tibtech.2020.09.004DOI Listing

Publication Analysis

Top Keywords

industrial biotechnology
12
underexploited potential
8
alternative carbon
8
acetate
6
acetate bio-based
4
bio-based products
4
products underexploited
4
potential industrial
4
biotechnology currently
4
currently biotechnological
4

Similar Publications

Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.

View Article and Find Full Text PDF

Construction of antibiotic-free riboflavin producer in by metabolic engineering strategies with a plasmid stabilization system.

Synth Syst Biotechnol

June 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.

Riboflavin, an important vitamin utilized in pharmaceutical products and as a feed additive, is mainly produced by metabolically engineered bacterial fermentation. However, the reliance on antibiotics in the production process leads to increased costs and safety risks. To address these challenges, an antibiotic-free riboflavin producer was constructed using metabolic engineering approaches coupled with a novel plasmid stabilization system.

View Article and Find Full Text PDF

Objectives: Colorectal cancer is the third most common cancer worldwide, accounting for approximately 10 % of all cancer cases. It is also the second leading cause of cancer-related deaths globally. Phloretin is a natural compound found in apples and other fruits.

View Article and Find Full Text PDF

Recent advances in biotechnology have brought novel solutions to both metabolic diseases and sustainable agriculture. This Patent Highlight examines innovation from four recent patents focusing on the genetic modification of microbes for nitrogen and carbon fixation and the development of pharmaceutical compounds to target critical metabolic pathways. These breakthroughs have potential applications in fields ranging from industrial biotechnology and agriculture to cancer therapy and metabolic disease treatment, providing new strategies for addressing global health and environmental challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!