Sulfoquinovose (6-deoxy-6-sulfoglucose, SQ) is a component of sulfolipids found in the photosynthetic membranes of plants and other photosynthetic organisms, and is one of the most abundant organosulfur compounds in nature. Microbial degradation of SQ, termed sulfoglycolysis, constitutes an important component of the biogeochemical sulfur cycle. Two sulfoglycolysis pathways have been reported, with one resembling the Embden-Meyerhof-Parnas (sulfo-EMP) pathway, and the other resembling the Entner-Doudoroff (sulfo-ED) pathway. Here we report a third sulfoglycolysis pathway in the bacterium Bacillus megaterium DSM 1804, in which sulfosugar cleavage is catalyzed by the transaldolase SqvA, which converts 6-deoxy-6-sulfofructose and glyceraldehyde 3-phosphate into fructose -6-phosphate and (S)-sulfolactaldehyde. Variations of this transaldolase-dependent sulfoglycolysis (sulfo-TAL) pathway are present in diverse bacteria, and add to the diversity of mechanisms for the degradation of this abundant organosulfur compound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2020.09.124 | DOI Listing |
iScience
October 2024
New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
Biochem Biophys Res Commun
December 2020
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China. Electronic address:
Sulfoquinovose (6-deoxy-6-sulfoglucose, SQ) is a component of sulfolipids found in the photosynthetic membranes of plants and other photosynthetic organisms, and is one of the most abundant organosulfur compounds in nature. Microbial degradation of SQ, termed sulfoglycolysis, constitutes an important component of the biogeochemical sulfur cycle. Two sulfoglycolysis pathways have been reported, with one resembling the Embden-Meyerhof-Parnas (sulfo-EMP) pathway, and the other resembling the Entner-Doudoroff (sulfo-ED) pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!