Commentary: Take two mitochondria and call me in the morning.

J Thorac Cardiovasc Surg

Division of Pediatric Cardiothoracic Surgery, Children's Health Dallas, University of Texas Southwestern, Dallas, Tex. Electronic address:

Published: July 2021

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2020.09.039DOI Listing

Publication Analysis

Top Keywords

commentary mitochondria
4
mitochondria call
4
call morning
4
commentary
1
call
1
morning
1

Similar Publications

Mitochondria and NLRP3: To die or inflame.

Immunity

January 2025

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

Mitochondria play critical roles in intrinsic apoptosis and NLRP3 inflammasome activation, but how these processes are interconnected remains unclear. In this issue of Immunity, Saller et al. unveiled the complexity of NLRP3 activators, highlighting mitochondria's roles in switching apoptosis to NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Aged neurons don't register energy need.

Science

December 2024

Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.

Neuronal activity and mitochondrial gene expression become decoupled in aged mice.

View Article and Find Full Text PDF

Mitochondrial dysfunction plays a pivotal role in the progression of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's, and Parkinson's disease. Recent discoveries have highlighted the involvement of DNA damage and repair processes, particularly mitochondrial DNA (mtDNA) damage, in these conditions. This commentary reflects on our recent findings, demonstrating the RNA/DNA binding protein fused in sarcoma (FUS)'s crucial role in maintaining mtDNA integrity through interactions with mitochondrial DNA ligase IIIα (mtLig3).

View Article and Find Full Text PDF

LNC-ing Genetics in Mitochondrial Disease.

Noncoding RNA

November 2024

Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

Primary mitochondrial disease (MD) is a group of rare genetic diseases reported to have a prevalence of 1:5000 and is currently without a cure. This group of diseases includes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD), Leber's hereditary optic neuropathy (LHON), Leigh syndrome (LS), Kearns-Sayre syndrome (KSS), and myoclonic epilepsy and ragged-red fiber disease (MERRF). Additionally, secondary mitochondrial dysfunction has been implicated in the most common current causes of mortality and morbidity, including cardiovascular disease (CVD) and cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!