Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Step-count monitors (pedometers, body-worn trackers and smartphone applications) can increase walking, helping to tackle physical inactivity. We aimed to assess the effect of step-count monitors on physical activity (PA) in randomised controlled trials (RCTs) amongst community-dwelling adults; including longer-term effects, differences between step-count monitors, and between intervention components.
Methods: Systematic literature searches in seven databases identified RCTs in healthy adults, or those at risk of disease, published between January 2000-April 2020. Two reviewers independently selected studies, extracted data and assessed risk of bias. Outcome was mean differences (MD) with 95% confidence intervals (CI) in steps at follow-up between treatment and control groups. Our preferred outcome measure was from studies with follow-up steps adjusted for baseline steps (change studies); but we also included studies reporting follow-up differences only (end-point studies). Multivariate-meta-analysis used random-effect estimates at different time-points for change studies only. Meta-regression compared effects of different step-count monitors and intervention components amongst all studies at ≤4 months.
Results: Of 12,491 records identified, 70 RCTs (at generally low risk of bias) were included, with 57 trials (16,355 participants) included in meta-analyses: 32 provided change from baseline data; 25 provided end-point only. Multivariate meta-analysis of the 32 change studies demonstrated step-counts favoured intervention groups: MD of 1126 steps/day 95%CI [787, 1466] at ≤4 months, 1050 steps/day [602, 1498] at 6 months, 464 steps/day [301, 626] at 1 year, 121 steps/day [- 64, 306] at 2 years and 434 steps/day [191, 676] at 3-4 years. Meta-regression of the 57 trials at ≤4 months demonstrated in mutually-adjusted analyses that: end-point were similar to change studies (+ 257 steps/day [- 417, 931]); body-worn trackers/smartphone applications were less effective than pedometers (- 834 steps/day [- 1542, - 126]); and interventions providing additional counselling/incentives were not better than those without (- 812 steps/day [- 1503, - 122]).
Conclusions: Step-count monitoring leads to short and long-term step-count increases, with no evidence that either body-worn trackers/smartphone applications, or additional counselling/incentives offer further benefit over simpler pedometer-based interventions. Simple step-count monitoring interventions should be prioritised to address the public health physical inactivity challenge.
Systematic Review Registration: PROSPERO number CRD42017075810 .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545847 | PMC |
http://dx.doi.org/10.1186/s12966-020-01020-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!