A LiCoPO-based high-voltage lithium-ion battery was fabricated in the format of a 1.2 Ah pouch cell that exhibited a highly stable cycle life at a cut-off voltage of 4.9 V. The high-voltage stability was achieved using a Fe-Cr-Si multi-ion-substituted LiCoPO cathode and lithium bis(fluorosulfonyl)imide in 1-methyl-1-propylpyrrolidinium bis(fluorosulfony)imide as the electrolyte. Due to the improved electrochemical stability at high voltage, the cell exhibited a stable capacity retention of 91% after 290 cycles without any gas evolution related to electrolyte decomposition at high voltage. In addition to improved cycling stability, the nominal 5 V LiCoPO pouch cell also exhibited excellent safety performance during a nail penetration safety test compared with a state-of-the-art lithium ion battery. Meanwhile, the thermal stabilities of the 1.2 Ah pouch cell as well as the delithiated LiCoPO were also studied by accelerating rate calorimetry (ARC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and in situ X-ray diffraction (XRD) analyses and reported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579286PMC
http://dx.doi.org/10.3390/ma13194450DOI Listing

Publication Analysis

Top Keywords

pouch cell
16
cell exhibited
12
high-voltage lithium-ion
8
lithium-ion battery
8
safety performance
8
high voltage
8
cell
5
battery substituted
4
licopo
4
substituted licopo
4

Similar Publications

Potassium-iodine batteries show great promise as alternatives for next-generation battery technology, owing to their high power density and environmental sustainability. Nevertheless, they suffer from polyiodide dissolution and the multistep electrode fabrication process, which leads to severe performance degradation and limitations in mass-market adoption. Herein, we report a simple "solution-adsorption" strategy for scale-up production of TiC(OH)-wrapped carbon nanotube paper (CNP), as an economic host for strengthening the iodine encapsulation.

View Article and Find Full Text PDF

The safety and cycling stability of potassium-ion batteries (PIBs) are deeply associated with potassium-ion electrolytes. However, due to the weak Lewis acidity of potassium ions, localized high-concentration electrolytes in PIBs are prone to excessive weak solvation. Herein, we propose an entropy repair strategy for the solvation structure of potassium ions and systematically design a moderately weakly solvated high-entropy localized high-concentration electrolyte.

View Article and Find Full Text PDF

In this work, a battery layup consisting of a poorly flammable ionic liquid electrolyte and a poly(vinylidene fluoride--hexafluoropropylene) (PVdF-HFP) thermoplastic has been developed along with composite anode and cathode electrodes. The developed gel electrolyte exhibits feasible ionic conductivity of about 1 mS/cm at 30 °C. State-of-the-art active electrode materials, i.

View Article and Find Full Text PDF

Popularizing Holistic High-Index Crystal Plane via Nonepitaxial Electrodeposition Toward Hydrogen-Embrittlement-Relieved Zn Anode.

Adv Mater

December 2024

College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China.

Electrodeposition is promising to fabricate Zn electrodes affording nonepitaxial single-crystal textures. Previous research endeavors focus on achieving Zn(002) faceted deposition, nevertheless, the popularization of a high-index Zn plane with favorable electrochemical activity remains poorly explored. There also exists a deficiency in the assessment of the electrodeposited quality of Zn.

View Article and Find Full Text PDF

Vanadium-based materials, which offer multiple oxidation states and rich redox reactions in zinc-ion batteries (ZIBs), have gained substantial attention. However, achieving green and efficient preparation of vanadium oxides-based materials featured with a controlled content of different heterovalent vanadium remains a significant challenge. Herein, a vanadium-supramolecular flower-shaped material (VSF) with heterovalent vanadium was prepared using NHVO as vanadium metal center and hexamethylenetetramine as organic ligand in aqueous solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!