Investigating uranium migration mechanisms related to the weathering of waste rocks is essential for developing strategies that can address the potential environmental issues caused by uranium mining. This work is based on environmental samples containing 2 L ferrihydrite, lepidocrocite and goethite collected in the technosols from granitic waste rock piles, mine drainage conduits and mine waters. The results show the important role of iron oxyhydroxide in U immobilization and re-concentration. EXAFS spectroscopy combined with mineralogical and geochemical studies (Scanning electronic microscopy, Wavelength-dispersive X-ray spectroscopy microprobe, inductively coupled plasma - optical emission spectrometry/mass spectrometry and X-ray diffraction) allowed for the identification of uranyl ternary surface complexes at the ferrihydrite surface that were either composed of phosphate groups or organic matter. Moreover, goethite and lepidocrocite were also identified as a secondary trap for U immobilization. U(VI) is known to be mobile in oxidizing conditions. This study highlights the control of the uranyl mobility by various iron oxyhydroxides in supergene conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.128473 | DOI Listing |
J Environ Sci (China)
July 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:
Arsenic-contaminated groundwater is widely used in agriculture. To meet the increasing demand for safe water in agriculture, an efficient and cost-effective method for As removal from groundwater is urgently needed. We hypothesized that Fe (oxyhydr)oxide (FeOOH) minerals precipitated in situ from indigenous Fe in groundwater may immobilize As, providing a solution for safely using As-contaminated groundwater in irrigation.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Earth Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
The compression behavior of iron oxyhydroxide ε-FeOOH is complex, with variations in its magnetic property and bonding character. In this study, in situ powder neutron diffraction experiments were conducted on ε-FeOOH and ε-FeOOD up to pressures exceeding 20 GPa to investigate a spin-reorientation (spin-flop) transition, hydrogen-bond (H-bond) symmetrization, and their correlation. The magnetic transition was observed at 8 GPa in both ε-FeOOH and ε-FeOOD.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan 302017 India. Electronic address:
Designing advanced materials that effectively mitigate the poor cycle life of battery-type electrodes with high specific capacities is crucial for next-generation energy storage systems. Herein, graphene oxide-ceria (GO-CeO) nanocomposite synthesized via a facile wet chemical route is explored as cathode for high-performance supercapacitors. The morphological analysis suggests fine ceria (CeO) nanoparticles dispersed over ultrathin graphene oxide (GO) sheets while structural studies reveal face-centered cubic phase of CeO in the nanocomposite.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; College of Chemical Engineering and Technology, Yantai Nanshan University, Yantai 265713, China. Electronic address:
The contamination of water resources by selenium (Se), particularly in the highly toxic Se(IV) oxidation state, poses a significant environmental and public health concern due to its detrimental impacts on humans and aquatic ecosystems. In this work, we report a novel composite foam (CFC) by incorporating chitosan (CS), cellulose nanofibers (CNF) and iron oxyhydroxide (FeOOH) nanoparticles through a one-pot fabrication process. The CFC foam features a three-dimensional porous structure, conferring both exceptional mechanical strength and superior adsorption performance for Se(IV), with a maximum equilibrium adsorption capacity of 90 mg/g achieved within 3 h.
View Article and Find Full Text PDFSci Total Environ
January 2025
Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India. Electronic address:
Over the last decades, the release and occurrence of organic pollutants in aquatic systems have become a major global concern due to their bioaccumulation, toxicity, and adverse effects on the ecosystem. Tetracycline (TC), a widely used antibiotic, is often found at high concentrations in the aqueous environment and tends to bind with the natural colloids. Post-COVID-19 pandemic, the release of surfactants in the environment has increased due to the excessive use of washing and cleaning products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!