Conductive polymers (CPs) are gaining considerable attention as materials for implantable bioelectronics due to their unique features such as electronic-ionic hybrid conductivity, mechanical softness, ease of chemical modification, as well as moderate biocompatibility. CPs have been utilized for a wide range of applications including neural engineering, regenerative medicine, multi-functional sensors and actuators. This review focuses on CP materials design for use in bio-interfacing electronics including composites, conductive hydrogels, and electrochemical deposition. We start by elaborating on the fundamental materials characteristics of CPs, including bio-electrochemical charge-transfer mechanisms, and contrast them with naturally derived CPs. We then present recent critical examples of the bioelectronic and biomedical applications of CPs, including neural recording and stimulation, tissue regeneration, stretchable electronics, and mechanical actuation. We conclude with a perspective of the current material challenges of CPs in bio-interfacing electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2020.112620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!