Oxidative damage is one of the main causes of cryopreservation injury compromising the use of cryopreserved biospecimens. The aim of this study was to evaluate the use of Fourier transform infrared spectroscopy (FTIR) as a non-invasive method to assess changes in biomolecular composition and structure, associated with oxidative stress in isolated biomolecules, acellular heart valve tissues, and ovarian cortex tissues. FTIR spectra of these specimens subjected to various treatments (HO- and Fenton-treatment or elevated temperatures) were vector normalized and selected spectral regions were analyzed by principal component analysis (PCA). Control and damaged biomolecules can easily be separated using PCA score plots. Acellular heart valve tissues that were subjected to different levels of oxidative damage formed separate cluster in PCA score plots. In hydrated ovarian tissue, large variation of the principal components was observed. Drying the ovarian tissues samples resulted in improved cluster separation of treatment groups. However, early signs of oxidative damage under mild stress conditions could not be detected by PCA of FTIR spectra. For the ovarian tissue samples, the standardly used nitro blue tetrazolium chloride (NBT) assay was used to monitor the amount of formazan production, reflecting reactive oxygen species (ROS) production at various temperatures. At 37 °C, formazan staining rapidly increased during the first 30 min, and then slowly reached a saturation level, but also at lower temperatures (i.e. 4 °C) formazan production was observed. In summary, we conclude that ATR-FTIR combined with PCA can be used to study oxidative damage in biomolecules as well as in tissues. In tissues, however, sample heterogeneity makes it difficult to detect early signs of oxidative damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2020.119003 | DOI Listing |
Environ Sci Technol
January 2025
Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.
This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.
View Article and Find Full Text PDFPLoS One
January 2025
Biomedical Sciences Research Institute, Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, United Kingdom.
Pseudoexfoliation glaucoma is a severe form of secondary open angle glaucoma and is associated with activation of the TGF-β pathway by TGF-β1. MicroRNAs (miRNAs) are small non-coding RNA species that are involved in regulation of mRNA expression and translation. To investigate what glaucomatous changes occur in the trabecular meshwork and how these changes may be regulated by miRNAs, we performed a bioinformatics analysis resulting in a miRNA-mRNA interactome.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO-Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!