Background: Deep Brain Stimulation (DBS) targeting the subthalamic nucleus (STN) and globus pallidus interna (GPi) is an effective treatment for cardinal motor symptoms and motor complications in Parkinson's Disease (PD). However, malpositioned DBS electrodes can result in suboptimal therapeutic response.

Objective: We explored whether recovery of the H-reflex-an easily measured electrophysiological analogue of the stretch reflex, known to be altered in PD-could serve as an adjunct biomarker of suboptimal versus optimal electrode position during STN- or GPi-DBS implantation.

Methods: Changes in soleus H-reflex recovery were investigated intraoperatively throughout awake DBS target refinement across 26 nuclei (14 STN). H-reflex recovery was evaluated during microelectrode recording (MER) and macrostimulation at multiple locations within and outside target nuclei, at varying stimulus intensities.

Results: Following MER, H-reflex recovery normalized (i.e., became less Parkinsonian) in 21/26 nuclei, and correlated with on-table motor improvement consistent with an insertional effect. During macrostimulation, H-reflex recovery was maximally normalized in 23/26 nuclei when current was applied at the location within the nucleus producing optimal motor benefit. At these optimal sites, H-reflex normalization was greatest at stimulation intensities generating maximum motor benefit free of stimulation-induced side effects, with subthreshold or suprathreshold intensities generating less dramatic normalization.

Conclusion: H-reflex recovery is modulated by stimulation of the STN or GPi in patients with PD and varies depending on the location and intensity of stimulation within the target nucleus. H-reflex recovery shows potential as an easily-measured, objective, patient-specific, adjunct biomarker of suboptimal versus optimal electrode position during DBS surgery for PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2020.09.024DOI Listing

Publication Analysis

Top Keywords

h-reflex recovery
24
optimal electrode
12
h-reflex
8
deep brain
8
brain stimulation
8
parkinson's disease
8
adjunct biomarker
8
biomarker suboptimal
8
suboptimal versus
8
versus optimal
8

Similar Publications

Deep dry needling (DDN) is a method to treat muscle trigger points (TrPs) often found in persons with neuromuscular pain and spasticity. Currently, its neurophysiological actions are not well established. Thus, to understand how DDN affects spinal cord physiology, we investigated the effects of TrP DDN on spinal reflexes.

View Article and Find Full Text PDF

Background: Radical resection of spinal cord lipomas reduces the rate of re-tethering. Current conventional neurophysiological mapping techniques are not able to differentiate between crucial motor nerve roots and sensory roots. Enhanced differentiation could contribute to complete resection.

View Article and Find Full Text PDF

Relationship between reticulospinal system sensitization and proprioceptive pathways in the development of dynamic spasticity (ReProDS) post-spinal cord injury: protocol for a prospective, observational cohort study.

BMC Neurol

November 2024

Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201619, China.

Background: Dynamic spasticity (DS) is a common complication post-spinal cord injury (SCI), marked by intermittent increases in muscle tone during postural transitions or movement. Despite its prevalence, high-quality research on DS incidence, risk factors, and underlying mechanisms in SCI patients remains limited. With the growing application of spinal cord stimulation (SCS) for spasticity control, the role of proprioception in DS development has garnered attention.

View Article and Find Full Text PDF

Intermittent hypoxia enhances voluntary activation and reduces performance fatigability during repeated lower limb contractions.

J Neurophysiol

December 2024

Sensorimotor Recovery and Neuroplasticity Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States.

Prior research has highlighted the therapeutic benefits of acute intermittent hypoxia (AIH) in enhancing motor performance after motor incomplete spinal cord injury and in able-bodied individuals. Although studies in rodents and humans indicate that AIH may facilitate motor excitability, the relationship between excitability changes and functional performance remains unclear. In addition, discrepancies in the effects of AIH on excitability in able-bodied individuals merit further investigation.

View Article and Find Full Text PDF

Background: Gigantocellular reticular nucleus (GRNs) executes a vital role in locomotor recovery after spinal cord injury. However, due to its unique anatomical location deep within the brainstem, intervening in GRNs for spinal cord injury research is challenging. To address this problem, this study adopted an extracorporeal magnetic stimulation system to observe the effects of selective magnetic stimulation of GRNs with iron oxide nanoparticles combined treadmill training on locomotor recovery after spinal cord injury, and explored the possible mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!