Preparation, characterization, and 3D printing verification of chitosan/halloysite nanotubes/tea polyphenol nanocomposite films.

Int J Biol Macromol

College of Food Science, Sichuan Agricultural University, Yaan 625014, China; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA. Electronic address:

Published: January 2021

In this study, chitosan/halloysite nanotubes/tea polyphenol (CS/HNTs/TP) nanocomposite films were prepared by the solution casting method. The scanning electron microscopy (SEM) result showed that the nanocomposite film with a CS/HNTs ratio of 6:4 and a TP content of 10% (C6H4-TP10) had a relatively smooth surface and a dense internal structure. The water vapor barrier property of the nanocomposite film was improved due to the tortuous channels formed by the HNTs. However, the swelling degree and water solubility of the nanocomposite films were decreased. The nanocomposite films have a good antioxidant capacity. Antibacterial experiments showed that the C6H4-TP10 nanocomposite film had certain inhibitory effects on the growth of both E. coli and S. aureus. In addition, we used 3D printer to verify the printability of the optimal formulation of the film-forming solution. Overall, this strategy provides a simple approach to construct promising natural antioxidants and antibacterial food packaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.09.253DOI Listing

Publication Analysis

Top Keywords

nanocomposite films
16
nanocomposite film
12
chitosan/halloysite nanotubes/tea
8
nanotubes/tea polyphenol
8
nanocomposite
7
preparation characterization
4
characterization printing
4
printing verification
4
verification chitosan/halloysite
4
polyphenol nanocomposite
4

Similar Publications

This study reports the preparation of cellulose nanocrystals (CNCs) from commercial bleached eucalyptus Kraft pulp (BEKP) using a hydrothermal treatment in the presence of maleic acid (MA), followed by high-pressure homogenization. Compared with conventional hydrolysis methods, this approach offers significant advantages, including lower acid concentration, higher yield, and milder processing conditions. CNCs were produced with a high yield (70-85 wt %) by high-pressure homogenization of hydrothermally treated BEKP fibers with 10-20 wt % maleic acid at 150 °C, giving rise to a stable translucent gel of CNCs with a rod-like morphology (200-400 nm length and 10-40 nm width).

View Article and Find Full Text PDF

Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).

View Article and Find Full Text PDF

A short review on polysaccharide-based nanocomposite adsorbents for separation and biomedical applications.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, Arak University, Arak, Iran. Electronic address:

Polysaccharides such as chitosan, alginate, cellulose, and carrageenan have emerged as promising adsorbents due to their biodegradability, abundant availability, and diverse chemical functionality. These biopolymers exhibit promising performance for adsorption of a wide range of pollutants including heavy metals (e.g.

View Article and Find Full Text PDF

Edible films are significant in prolonging the shelf life of meat products. Herein, we prepared some edible coatings (EW/TNPCSs) based on egg white/chitosan/pectin as polymer matrix, containing tannic acid-nisin composite nano-crosslinker with antibacterial-antioxidant activities. The results of preservation indicated that the prepared EW/TNPCSs reduced the water loss of chilled pork and delayed the changes of taste, texture and surface color.

View Article and Find Full Text PDF

Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!