Background: Plutella xylostella has developed resistance to a variety of pesticides in the field. Selection, inheritance, a near-isogenic line, cross-resistance and biochemical mechanisms of pyridalyl resistance were characterized in a field-collected resistant population of P. xylostella from China.
Results: Compared with a susceptible IVF-S strain, the field-collected FZ population showed ~ 350-fold resistance to pyridalyl. The FZ-PY strain, selected from the FZ population using pyridalyl, developed ~ 640-fold resistance to pyridalyl. Inheritance tests indicated that pyridalyl resistance in the FZ-PY strain was autosomal and incompletely recessive. Through successive backcrossing to IVF-S, a near-isogenic strain (NIL-PY) was established that exhibited 191.21-fold resistance to pyridalyl and no cross-resistance to other tested popular insecticides. No significant effects of synergists and higher activities of metabolic enzymes were observed in NIL-PY compared with IVF-S. Furthermore, the survival rate of NIL-PY larvae, and female oviposition, fecundity and egg viability were markedly reduced in NIL-PY compared with IVF-S. The fitness of NIL-PY was found to be 0.56 compared with IVF-S.
Conclusion: Considering that no relevant effects of synergists or oxidative metabolism were observed in NIL-PY, and that pyridalyl resistance results in significant fitness costs compared with IVF-S, further research will be conducted on the mechanism of target-site resistance. © 2020 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.6129 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!