Lanthanide rarity in natural waters: implications for microbial C1 metabolism.

FEMS Microbiol Lett

School for the Environment, University of Massachusetts, 100 Morrissey Blvd., Boston, MA, 02125, USA.

Published: December 2020

Research in the last decade has illuminated the important role that lanthanides play in microbial carbon metabolism, particularly methylotrophy. Environmental omics studies have revealed that lanthoenzymes are dominant in some environments, and laboratory studies have shown that lanthoenzymes are favored over their calcium-containing counterparts even when calcium is far more abundant. Lanthanide elements are common in rocks but occur at exceedingly low levels in most natural waters (picomolar to nanomolar range) with the exception of volcanic hot springs, which can reach micromolar concentrations. Calcium is orders of magnitude higher in abundance than lanthanide elements across natural settings. Bacteria that use lanthanides for growth on simple carbon compounds (e.g. methanol and ethanol) grow optimally at micromolar concentrations. It is highly likely that bacteria in the environment have evolved specialized lanthanide sequestration and high-affinity uptake systems to overcome lanthanide deprivation. Indeed, we identified genes in soil metagenomes encoding the lanthanide-binding protein lanmodulin, which may be important for cellular differentiation between calcium and lanthanides. More research is needed on microbial adaptations to lanthanide scarcity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnaa165DOI Listing

Publication Analysis

Top Keywords

natural waters
8
lanthanide elements
8
micromolar concentrations
8
lanthanide
6
lanthanide rarity
4
rarity natural
4
waters implications
4
implications microbial
4
microbial metabolism
4
metabolism decade
4

Similar Publications

The hydrologic benefits of catchment-scale implementation of stormwater control measures (SCMs) in mitigating the adverse effects of urbanization are well established. Nevertheless, recent studies indicate that the Unified Stormwater Sizing Criteria (USSC) regulations, mandating the combined use of distributed and storage stormwater controls, do not protect channel stability, despite their effectiveness in reducing runoff from impervious surfaces. The USSC are the basis of SCM design in 11 U.

View Article and Find Full Text PDF

Microbial coalescence plays a crucial role in shaping aquatic ecosystems by facilitating the merging of neighboring microbial communities, thereby influencing ecosystem structure. Although this phenomenon is commonly observed in natural environments, comprehensive quantitative comparative studies on different lifestyle bacteria involved in this process are still lacking. The study focuses on 16S rRNA Amplicon Sequence Variants (ASVs) at the Jinsha River hydropower stations (Wudongde [WDD], Baihetan [BHT], Xiluodu [XLD], Xiangjiaba [XJB]), specifically examining free-living (FL) and particle-attached (PA) bacteria.

View Article and Find Full Text PDF

As a representative agent of bicyclic antidepressants, venlafaxine (VEN) has become widely used worldwide and is frequently detected in surface waters with concentrations ranging from ng/L to µg/L. To evaluate the toxicological effects of such medications on aquatic species, studies on environmentally relevant concentrations are essential. Zebrafish were used as a model organism to assess growth and development in larvae and examine tissue accumulation, oxidative stress, and DNA methylation in adults.

View Article and Find Full Text PDF

Rhamnolipid: nature-based solution for the removal of microplastics from the aquatic environment.

Integr Environ Assess Manag

January 2025

Engineering Faculty, Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye.

Over the past two decades, research into the accumulation of small plastic particles and fibers in organisms and environmental settings has yielded over 7,000 studies, highlighting the widespread presence of microplastics in ecosystems, wildlife, and human bodies. In recent years, these contaminants have posed a significant threat to human, animal, and environmental health, with most efforts concentrated on removing them from aquatic systems. Given this urgency, the purpose of this study was to investigate the potential of rhamnolipid, a biosurfactant, for the removal of microplastics from water.

View Article and Find Full Text PDF

Floodplain forests drive fruit-eating fish diversity at the Amazon Basin-scale.

Proc Natl Acad Sci U S A

January 2025

Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Institut de Recherche pour le Développement, Institut National Polytechnique de Toulouse, Université Toulouse 3 - Paul Sabatier, Toulouse F-31062, France.

Unlike most rivers globally, nearly all lowland Amazonian rivers have unregulated flow, supporting seasonally flooded floodplain forests. Floodplain forests harbor a unique tree species assemblage adapted to flooding and specialized fauna, including fruit-eating fish that migrate seasonally into floodplains, favoring expansive floodplain areas. Frugivorous fish are forest-dependent fauna critical to forest regeneration via seed dispersal and support commercial and artisanal fisheries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!