Glutamate dehydrogenase (GLDH) is a liver-specific biomarker of hepatocellular damage currently undergoing qualification as a drug development tool. Since GLDH is located within the mitochondrial matrix, it has been hypothesized that it might also be useful in assessing mitotoxicity as an initiating event during drug-induced liver injury. According to this hypothesis, hepatocyte death that does not involve primary mitochondrial injury would result in release of intact mitochondria into circulation that could be removed by high speed centrifugation and result in lower GLDH activity measured in spun serum vs un-spun serum. A single prior study in mice has provided some support for this hypothesis. We sought to repeat and extend the findings of this study. Accordingly, mice were treated with the known mitochondrial toxicant, acetaminophen (APAP), or with furosemide (FS), a toxicant believed to cause hepatocyte death through mechanisms not involving mitotoxicity as initiating event. We measured GLDH levels in fresh plasma before and after high speed centrifugation to remove intact mitochondria. We found that both APAP and FS treatments caused substantial hepatocellular necrosis that correlated with plasma alanine aminotransferase (ALT) and GLDH elevations. The plasma GLDH activity in both the APAP- and FS- treated mice was not affected by high-speed centrifugation. Interestingly, the ratio of GLDH:ALT was 5-fold lower during FS compared to APAP hepatotoxicity. Electron microscopy confirmed that both APAP- and FS-treatments had resulted in mitochondrial injury. Mitochondria within vesicles were only observed in the FS-treated mice raising the possibility that mitophagy might account for reduced release of GLDH in the FS-treated mice. Although our results show that plasma GLDH is not clinically useful for evaluating mitotoxicity, the GLDH:ALT ratio as a measure of mitophagy needs to be further studied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546462PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240562PLOS

Publication Analysis

Top Keywords

glutamate dehydrogenase
8
gldh
8
mitotoxicity initiating
8
initiating event
8
hepatocyte death
8
mitochondrial injury
8
intact mitochondria
8
high speed
8
speed centrifugation
8
gldh activity
8

Similar Publications

Article Synopsis
  • Diabetic kidney disease (DKD) is a major cause of kidney failure, largely due to damage in podocytes, which are essential for kidney function.
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key player in protecting cells from oxidative stress, making it a promising target for DKD therapies.
  • The study found that DDO-1039, a new Nrf2 activator, improved kidney health in diabetic mice by reducing podocyte injury, lowering blood sugar levels, and decreasing inflammation, endorsing its potential as a treatment for DKD.
View Article and Find Full Text PDF

[Impact of Organic Amendment on the Bacterial Community and Rice Yield in Paddy Soil].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

In this investigation, the influence of organic amendment on the structural and functional dynamics of soil microbial communities and its effect on rice productivity were examined. Five fertilization treatments from a 40-year field experiment were selected: no fertilizer (CK), inorganic NPK fertilizer (NPK), inorganic NPK combined with green manure (NG), inorganic NPK combined with green manure and pig manure (NGM), and inorganic NPK combined with green manure and rice straw (NGS). The findings revealed that the organic amendment enhanced the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) levels, alongside an increase in rice yield; notably, the most significant improvements were observed with the NGM treatment.

View Article and Find Full Text PDF

Nitrogen (N) is one of the three major elements required for plant growth and development. It is of great significance to study the effects of different nitrogen application levels on the growth and root exudates of Phlomoides rotata, and can provide a theoretical basis for its scientific application of fertilizer to increase production. In this study, Phlomoides rotata were grown under different nitrogen conditions for two months.

View Article and Find Full Text PDF

Transcriptomic and physiological analyses reveal the toxic effects of inorganic filters (nZnO and nTiO) on scleractinian coral Galaxea fascicularis.

Environ Res

December 2024

Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.

The effects of sunscreen on scleractinian corals have garnered widespread attention; however, the toxic effects and mechanisms remain unclear. This study investigated the toxicological effects of two common inorganic filters used in sunscreens, nano zinc oxide and titanium dioxide (nZnO and nTiO₂), on the reef-building coral Galaxea fascicularis, focusing on the phenotypic, physiological, and transcriptomic responses. The results showed that after exposure to 0.

View Article and Find Full Text PDF

Bearded dragons () are a common reptile species kept under human care and suffer from a wide range of diseases for which plasma biochemistry is used as a first-line diagnostic test. There is limited information available regarding tissue enzyme activities and origin that could assist in interpreting the bearded dragon plasma biochemistry enzymology profile. The aim of this study was to characterize the tissue activities of seven enzymes routinely used in the reptile biochemistry panel: alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), glutamate dehydrogenase (GLDH), lactate dehydrogenase (LDH), and creatine kinase (CK) in 12 adult inland bearded dragons in 13 tissues, plasma, and red blood cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!