The prediction of the liver failure (LF) and its proper diagnosis would lead to a reduction in the complications of the disease and prevents the progress of the disease. To improve the treatment of LF patients and reduce the cost of treatment, we build a machine learning model to forecast whether a patient would deteriorate after admission to the hospital. First, a total of 348 LF patients were included from May 2011 to March 2018 retrospectively in this study. Then, 15 key clinical indicators are selected as the input of the machine learning algorithm. Finally, machine learning and the Model for End-Stage Liver Disease (MELD) are used to forecast the LF deterioration. The area under the receiver operating characteristic (AUC) of MELD, GLMs, CART, SVM and NNET with 10 fold-cross validation was 0.670, 0.554, 0.794, 0.853 and 0.912 respectively. Additionally, the accuracy of MELD, GLMs, CART, SVM and NNET was 0.669, 0.456, 0.794, 0.853 and 0.912. The predictive performance of the developed machine model execept the GLMs exceeds the classic MELD model. The machine learning method could support the physicians to trigger the initiation of timely treatment for the LD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546449PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239266PLOS

Publication Analysis

Top Keywords

machine learning
20
treatment patients
8
learning model
8
meld glms
8
glms cart
8
cart svm
8
svm nnet
8
0794 0853
8
0853 0912
8
machine
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!