A highly sensitive quantum dot (QD)-based western blot assay with extended dynamic range was developed. Bimodal size distribution QD (BQ) immunoprobes composed of small size single QD (7.3 nm) and big size QD nanobead (QB) (82.9 nm) were employed for fluorescent western blot immunoassay on a membrane. Small size QD immunoprobes contributed to wider dynamic range of assay, while big size QB immunoprobes provided higher detection sensitivity. This BQ-based western blot assay can achieve a wide dynamic range (from 7.8 to 4000 ng IgG) and is nearly as sensitive as commercial available ultrasensitive chemiluminescent methods, just using a simple gel imager with UV light (365 nm) excitation and red light filter (610 nm). The fluorescent signals of BQ western blot were stable for 10 min, while chemiluminescent signals faded after 1 min. Moreover, this BQ immunoprobe was utilized for the detection of housekeeping protein and specific target proteins in complex cell lysate samples. The limit of detection of housekeeping protein is 0.25 μg of cell lysate, and the signal intensities were proportional to loading protein amount in a wide range from 0.61 to 80 μg. We believe that this new strategy of bimodal size distribution nanoparticles can also be expanded for other functional nanoparticle-based biological assays to improve the sensitivity and extend the dynamic range. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-020-04578-zDOI Listing

Publication Analysis

Top Keywords

dynamic range
20
western blot
16
bimodal size
12
size distribution
12
fluorescent western
8
extended dynamic
8
blot assay
8
small size
8
big size
8
size immunoprobes
8

Similar Publications

Heatwaves pose a range of severe impacts on human health, including an increase in premature mortality. The summers of 2018 and 2022 are two examples with record-breaking temperatures leading to thousands of heat-related excess deaths in Europe. Some of the extreme temperatures experienced during these summers were predictable several weeks in advance by subseasonal forecasts.

View Article and Find Full Text PDF

Measuring transient functional connectivity is an important challenge in electroencephalogram (EEG) research. Here, the rich potential for insightful, discriminative information of brain activity offered by high-temporal resolution is confounded by the inherent noise of the medium and the spurious nature of correlations computed over short temporal windows. We propose a methodology to overcome these problems called filter average short-term (FAST) functional connectivity.

View Article and Find Full Text PDF

Introduction HIV stigma levels are high in Greece. HIV stigma hinders testing, healthcare access, and treatment adherence, often leading to non-disclosure. The discloser navigates challenges by balancing the confidant's potential reactions, ranging from rejection and discrimination to the benefits of increased intimacy and liking.

View Article and Find Full Text PDF

A First-Principles Thermodynamic Model for the Ba-Zr-S System in Equilibrium with Sulfur Vapor.

ACS Appl Energy Mater

December 2024

Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne NE1 8QH, United Kingdom.

The chalcogenide perovskite BaZrS has strong visible light absorption and high chemical stability, is nontoxic, and is made from earth-abundant elements. As such, it is a promising candidate material for application in optoelectronic technologies. However, the synthesis of BaZrS thin-films for characterization and device integration remains a challenge.

View Article and Find Full Text PDF

Hydrogel microspheres for bone regeneration through regulation of the regenerative microenvironment.

Biomater Transl

September 2024

Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China.

Bone defects are a prevalent category of skeletal tissue disorders in clinical practice, with a range of pathogenic factors and frequently suboptimal clinical treatment effects. In bone regeneration of bone defects, the bone regeneration microenvironment-composed of physiological, chemical, and physical components-is the core element that dynamically coordinates to promote bone regeneration. In recent years, medical biomaterials with bioactivity and functional tunability have been widely researched upon and applied in the fields of tissue replacement/regeneration, and remodelling of organ structure and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!