An electrochemical immunosensor based on ferrocene (Fc)-functionalized nanocomposites was fabricated as an efficient electroactive signal probe to amplify electrochemical signals for Salmonella typhimurium detection. The electrochemical signal amplification probe was constructed by encapsulating ferrocene into S. typhimurium-specific antimicrobial peptides Magainin I (MI)-Cu(PO) organic-inorganic nanocomposites (Fc@MI) through a one-step process. Magnetic beads (MBs) coupled with antibody were used as capture ingredient for target magnetic separation, and Fc@MI nanoparticles were used as signal labels in the immunoassays. The sandwich of MBs-target-Fc@MI assay was performed using a screen-printed carbon electrode as transducer surface. The immunosensor platform presents a low limit of detection (LOD) of 3 CFU·mL and a linear range from 10 to 10 CFU·mL, with good specificity and precision, and was successfully applied for S. typhimurium detection in milk. Graphical abstract One-pot process antimicrobial peptides Magainin I-Cu(PO) organic-inorganic nanocomposites (Fc@MI) were used as ideal electrochemical signal label, integrating both essential functions of biological recognition and signal amplification. Screen-printed carbon electrode (SPCE) was used as the electrochemical system for Salmonella typhimurium detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-020-04579-y | DOI Listing |
Anal Chem
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
Detection and imaging of dual miRNAs based on AND logic gates can improve the accuracy of the early diagnosis of disease. However, a single target may lead to false positive. Hence, this work rationally integrates hyperbranched rolling circle amplification (HRCA) with Cas12a by replacing the PAM sequence with a bubble to sensitively detect and image miRNA-10b and miRNA-21 based on the AND logic gate.
View Article and Find Full Text PDFIn this paper, we demonstrate a high-contrast front-end laser system based on Yb: YAG solid-state laser for Ti: sapphire terminal amplification. An ultrafast Yb: YAG solid-state laser is used to generate a broad-spectrum seed through white light generation (WLG), and then the signal light near 1600 nm is amplified by three-level colinear optical parametric chirped pulse amplification (OPCPA). Finally, a fs second harmonic generation (SHG) is used to obtain a laser output with a central wavelength of 795 nm, a pulse width of 40.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
Various metabolic and cell signaling processes impact the functions of sugarcane plant cells. MicroRNAs (miRNAs) play critical regulatory roles in enhancing yield and providing protection against various stressors. This study seeks to identify and partially characterize several novel miRNAs in sugarcane using tools, while also offering a preliminary assessment of their functions.
View Article and Find Full Text PDFESMO Open
January 2025
Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:
Background: Disruption of cyclin D-dependent kinases (CDKs), particularly CDK4/6, drives cancer cell proliferation via abnormal protein phosphorylation. This open-label, single-arm, phase Ib/II trial evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, combined with paclitaxel against CDK4/6-activated tumors.
Patients And Methods: Patients with locally advanced or metastatic solid tumors with CDK4/6 pathway aberrations were included.
Talanta
January 2025
Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China. Electronic address:
Quorum sensing signal molecules released by microorganisms serve as critical biomarkers regulating the attachment and aggregation of marine microbes on engineered surfaces. Hence, the development of efficient and convenient methods for detecting quorum sensing signal molecules is crucial for monitoring and controlling the formation and development of marine biofouling. Advanced optoelectronic technologies offer increased opportunities and methods for detecting quorum sensing signal molecules, thereby enhancing the accuracy and efficiency of detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!