A redox-neutral Rh(iii)-catalyzed C-H annulation of indolyl oximes was developed. Relying on the use of various alkynyl silanes as the terminal alkyne surrogates, the reaction exhibited a reverse regioselectivity, thus giving an exclusive and easy way for the synthesis of a wide range of substituent free γ-carbolines at C3 position with high efficiency. Deuterium-labelling experiments and kinetic analysis have preliminarily shed light on the working mode of this catalytic system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cc04740f | DOI Listing |
Chem Sci
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
Reported herein is the first example of a ruthenium-catalyzed C-H activation/annulation of phenothiazine-3-carbaldehydes to construct structurally diverse pyrido[3,4-]phenothiazin-3-iums with dual-emission characteristics. Novel organic single-molecule white-light materials based on pyrido[3,4-]phenothiazin-3-iums with dual-emission and thermally activated delayed fluorescence (TADF) characteristics have been developed for the first time herein. Furthermore, the dual-emission molecule could be fabricated as water-dispersed NPs, which could be applied in two-channel emission intensity ratio imaging to observe the intercellular structure and can specifically target the cell membrane.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
We herein report a Rh(III)-catalyzed C-H bond coupling of -chloroimines with maleimides, in which the [4 + 2] annulation and dehydrogenative annulation processes can be selectively achieved by simply adjusting the reaction conditions. This protocol is compatible with various functional groups, shows exquisite selectivity, and presents a concise synthetic procedure to respective products in moderate to good yields. With all these merits, this strategy may be applicable in the construction of related azaheterocyclic skeletons.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoy Street, 22, Ekaterinburg 620137, Russia.
The synthetic approach based on a sequence of Buchwald-Hartwig cross-coupling and annulation through intramolecular oxidative cyclodehydrogenation has been used for the construction of novel 4-alkyl-4-thieno[2',3':4,5]pyrrolo[2,3-]quinoxaline derivatives. For the first time, these polycyclic compounds were evaluated for antimycobacterial activity, including extensively drug-resistant strains. A reasonable bacteriostatic effect against HRv was demonstrated.
View Article and Find Full Text PDFMolecules
January 2025
Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, China.
An efficient Rh(III)-catalyzed C-H activation of azobenzenes and subsequent [4+1] cascade annulation with CF-imidoyl sulfoxonium ylides was developed, yielding diverse CF-indazoles. This protocol featured easily available starting materials, excellent functional group tolerance and high efficiency. Moreover, the antitumor activities of selected CF-indazoles against human cancer cell lines were also studied, and the results indicated that several compounds displayed considerable antiproliferative activities.
View Article and Find Full Text PDFMolecules
January 2025
School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China.
Efficient access to pyranoisoquinoline derivatives via rhodium-catalyzed double C-H functionalization of phenyl oxadiazoles and diazo compounds has been developed. Two C-C bonds and one C-O and C-N bond formation was realized by this tandem reaction, along with the formation of two heterocycles, affording diversified pyran-fused isoquinolines in moderate to good yields with broad functional group tolerance under mild reaction conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!