This Letter describes a search for narrowly resonant new physics using a machine-learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search A→BC, for m_{A}∼O(TeV), m_{B},m_{C}∼O(100  GeV) and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 sqrt[s]=13  TeV pp collision dataset of 139  fb^{-1} recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV. Cross-section limits for narrow-width A, B, and C particles vary with m_{A}, m_{B}, and m_{C}. For example, when m_{A}=3  TeV and m_{B}≳200  GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on m_{C}. For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model bosons.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.131801DOI Listing

Publication Analysis

Top Keywords

atlas detector
8
masses jets
8
search
5
dijet
4
dijet resonance
4
resonance search
4
search weak
4
weak supervision
4
supervision sqrt[s]=13  tev
4
sqrt[s]=13  tev collisions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!