As opposed to the common monotonic relaxation process of glasses, the Kovacs memory effect describes an isothermal annealing experiment, in which the enthalpy and volume of a preannealed glass first increases before finally decreasing toward equilibrium. This interesting behavior has been observed for many materials and is generally explained in terms of heterogeneous dynamics. In this Letter, the memory effect in a model Au-based metallic glass is studied using a high-precision high-rate calorimeter. The activation entropy (S^{*}) during isothermal annealing is determined according to the absolute reaction rate theory. We observe that the memory effect appears only when the second-annealing process has a large S^{*}. These results indicate that a large value of S^{*} is a key requirement for observation of the memory effect and this may provide a useful perspective for understanding the memory effect in both thermal and athermal systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.135501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!