A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interaction-Induced Transparency for Strong-Coupling Polaritons. | LitMetric

Interaction-Induced Transparency for Strong-Coupling Polaritons.

Phys Rev Lett

Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany.

Published: September 2020

The propagation of light in strongly coupled atomic media takes place through the formation of polaritons-hybrid quasiparticles resulting from a superposition of an atomic and a photonic excitation. Here we consider the propagation under the condition of electromagnetically induced transparency and show that a novel many-body phenomenon can appear due to strong, dissipative interactions between the polaritons. Upon increasing the photon-pump strength, we find a first-order transition between an opaque phase with strongly broadened polaritons and a transparent phase where a long-lived polariton branch with highly tunable occupation emerges. Across this nonequilibrium phase transition, the transparency window is reconstructed via nonlinear interference effects induced by the dissipative polariton interactions. Our predictions are based on a systematic diagrammatic expansion of the nonequilibrium Dyson equations which can be controlled, even in the nonperturbative regime of large single-atom cooperativities, provided the polariton interactions are sufficiently long-ranged. Such a regime can be reached in photonic crystal waveguides thanks to the tunability of interactions, allowing us to observe the interaction-induced transparency transition even at low polariton densities.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.133604DOI Listing

Publication Analysis

Top Keywords

interaction-induced transparency
8
polariton interactions
8
transparency strong-coupling
4
strong-coupling polaritons
4
polaritons propagation
4
propagation light
4
light coupled
4
coupled atomic
4
atomic media
4
media takes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!