As original equipment manufacturers (OEMs) strive to deliver improved coating performance with a sustainable footprint, opportunities for innovation are emerging, particularly on improving mechanical properties, appearance, and solids content. Resistance to scratch and mar damage is one of the key performance attributes that has been emphasized by both OEMs and consumers to maintain a vehicle's appearance and corrosion resistance over its service lifetime. Fundamental methodologies including instrumented scratch measurements at multiple size scales are used in this work as part of a product development strategy to better understand the scratch and mar behavior of automotive topcoats. This study compares physical properties of several melamin-formaldehyde and isocyanate cured clearcoats over the appropriate basecoats. Micro- and nano-scratch techniques were employed in combination with industry standard method, Amtec-Kistler carwash to identify performance differences under different scratch conditions. Mechanical and viscoelastic properties of the coatings were studied using tensile tests and dynamic mechanical thermal analysis (DMTA) to better understand the failure mechanisms associated with plastic deformation and fracture at different scratch scales. The information gathered from the above testing protocols is used to analyze coating performance in terms of the contact strain, transitions between elastic - plastic behavior, coefficient of friction and stress localization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539636PMC

Publication Analysis

Top Keywords

coating performance
8
scratch mar
8
better understand
8
scratch
6
fundamentals characterizations
4
characterizations scratch
4
scratch resistance
4
resistance automotive
4
automotive clearcoats
4
clearcoats original
4

Similar Publications

Low-Impedance Hybrid Carbon Structures on SiO: A Sequential Gas-Phase Coating Approach.

Small Methods

January 2025

BCMaterials, Basque Centre for Materials, Applications and Nanostructures; UPV/EHU Science Park, Leioa, 48940, Spain.

Carbon coating on SiO surface is crucial for enhancing initial Coulombic efficiency (ICE) and cycling performance in batteries, while also buffering volume expansion. Despite its market prevalence, the effects of the carbon layer's quality and structure on the electrochemical properties of SiO remain underexplored. This study compares carbon layers produced via gas-phase and solid-phase coating methods, introducing an innovative technique that sequentially uses two gases to develop a low-impedance hybrid carbon structure.

View Article and Find Full Text PDF

Background: The direct antiglobulin test (DAT) detects red blood cell (RBC) sensitivity to complement or IgG . The clinical disorders of hemolytic disease of the newborn, hemolytic transfusion reaction, and autoimmune and drug-induced hemolytic anemia are some examples of those that can cause coating of RBCs with antibodies or complement autoimmune hemolytic anemia (AIHA). Rarely, DAT is positive in nonimmune-mediated hemolytic anemias as well.

View Article and Find Full Text PDF

We present a case of a 60-year-old man with claudication in his right foot; the patient had received stent-graft implantation for the right superficial femoral artery (SFA) 1 year ago. Computed tomography angiography suggested stent occlusion of the right SFA, and a thrombus was considered to cause occlusion. To avoid distal embolization, we performed lesion recanalization via a trans-ankle intervention.

View Article and Find Full Text PDF

Preparation of sulfur-doped porous carbon from polyphenylene sulfide waste for photothermal conversion materials to achieve solar-driven water evaporation.

Nanoscale

January 2025

College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.

In recent years, solar-driven photothermal water evaporation technology for seawater desalination and wastewater treatment has developed rapidly, which is of great significance for addressing the issue of freshwater scarcity. However, due to the high costs associated with the manufacturing, maintenance, and operation of such devices, their application remains challenging in remote and resource-scarce regions. Due to its excellent light absorption capability in the near-infrared region, high hydrophilicity, and stable chemical properties, coupled with the low cost of recycling waste carbonized polyphenylene sulfide, this material is an excellent choice as a photothermal material for solar-driven water evaporation devices.

View Article and Find Full Text PDF

NIR-Reflective Black Photonic Films Designed for Effective LiDAR Recognition.

ACS Appl Mater Interfaces

January 2025

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!