Far too little is known about the long-term dynamics of populations for almost all macro-organisms. Here, we examined the utility of sedimentary DNA techniques to reconstruct the dynamics in the "abundance" of a species, which has not been previously defined. We used fish DNA in marine sediments and examined whether it could be used to track the past dynamics of pelagic fish abundance in marine waters. Quantitative PCR for sedimentary DNA was applied on sediment-core samples collected from anoxic bottom sediments in Beppu Bay, Japan. The DNA of three dominant fish species (anchovy, sardine, and jack mackerel) were quantified in sediment sequences spanning the last 300 years. Temporal changes in fish DNA concentrations are consistent with those of landings in Japan for all three species and with those of sardine fish scale concentrations. Thus, sedimentary DNA could be used to track decadal-centennial dynamics of fish abundance in marine waters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546629 | PMC |
http://dx.doi.org/10.1038/s42003-020-01282-9 | DOI Listing |
Ecol Evol
January 2025
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems Potsdam Germany.
Mountains with complex terrain and steep environmental gradients are biodiversity hotspots such as the eastern Tibetan Plateau (TP). However, it is generally assumed that mountain terrain plays a secondary role in plant species assembly on a millennial time-scale compared to climate change. Here, we investigate plant richness and community changes during the last 18,000 years at two sites: Lake Naleng and Lake Ximen on the eastern TP with similar elevation and climatic conditions but contrasting terrain.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
NPJ Biofilms Microbiomes
January 2025
School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China.
Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
Caves are primary sites for studying human and animal subsistence patterns and genetic ancestry throughout the Palaeolithic. Iberia served as a critical human and animal refugium in Europe during the Last Glacial Maximum (LGM), 26.5 to 19 thousand years before the present (cal kya).
View Article and Find Full Text PDFBMC Microbiol
December 2024
School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, China.
Background: Different species of sea cucumbers in various regions have diverse preferred habitats and feeding habits. However, detailed research on the correlation between food selection and habitat preference of sea cucumbers, as well as their adaptive adjustments to specific habitat types, is still lacking.
Methods: A field study was carried out to explore the relationship between food selection and habitat preference, as well as the adaptation process, of the tropical sea cucumber Stichopus chloronotus, which has specific food preferences.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!