Cadherin repeat 5 mutation associated with Bt resistance in a field-derived strain of pink bollworm.

Sci Rep

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

Published: October 2020

Evolution of resistance by pests reduces the benefits of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Here we analyzed resistance to Bt toxin Cry1Ac in a field-derived strain of pink bollworm (Pectinophora gossypiella), a global pest of cotton. We discovered that the r14 allele of the pink bollworm cadherin gene (PgCad1) has a 234-bp insertion in exon 12 encoding a mutant PgCad1 protein that lacks 36 amino acids in cadherin repeat 5 (CR5). A strain homozygous for this allele had 237-fold resistance to Cry1Ac, 1.8-fold cross-resistance to Cry2Ab, and developed from neonate to adult on Bt cotton producing Cry1Ac. Inheritance of resistance to Cry1Ac was recessive and tightly linked with r14. PgCad1 transcript abundance in midgut tissues did not differ between resistant and susceptible larvae. Toxicity of Cry1Ac to transformed insect cells was lower for cells expressing r14 than for cells expressing wild-type PgCad1. Wild-type PgCad1 was transported to the cell membrane, whereas PgCad1 produced by r14 was not. In larval midgut tissue, PgCad1 protein occurred primarily on the brush border membrane only in susceptible larvae. The results imply r14 mediates pink bollworm resistance to Cry1Ac by reduced translation, increased degradation, and/or mislocalization of cadherin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544870PMC
http://dx.doi.org/10.1038/s41598-020-74102-zDOI Listing

Publication Analysis

Top Keywords

pink bollworm
16
resistance cry1ac
12
cadherin repeat
8
field-derived strain
8
strain pink
8
pgcad1 protein
8
susceptible larvae
8
cells expressing
8
wild-type pgcad1
8
pgcad1
7

Similar Publications

The pink bollworm, (Saunders) (Lepidoptera: Gelechiidae) is a serious insect pest of cotton crop. The studies to evaluate the impact of abiotic factors on cotton pests' biology are limited. The current study was undertaken to determine the impact of abiotic factors (temperature, humidity, photoperiod) and an insecticide (lambda-cyhalothrin) on the biological aspects of .

View Article and Find Full Text PDF

Pink bollworm (PBW) Pectinophora gossypiella is an important pest cotton worldwide. There are multiple factors which determines the occurrence and distribution of P. gossypiella across different cotton growing regions of the world, and one such key factor is 'temperature'.

View Article and Find Full Text PDF

Mutation in PgABCC2 confers low-level resistance to Cry1Ac in pink bollworm.

Pest Manag Sci

July 2024

Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China.

Background: With the increasing incidence of pest resistance to transgenic crops producing Bacillus thuringiensis (Bt) proteins in the field, elucidating the molecular basis of resistance is important for monitoring, delaying and countering pest resistance. Previous work revealed that mutation or down-regulated expression of the cadherin gene (PgCad1) is associated with pink bollworm (Pectinophora gossypiella) resistance to Cry1Ac, and 20 mutant PgCad1 alleles (r1-r20) were characterized. Here, we tested the hypothesis that the ABC transporter PgABCC2 is a functional receptor for the Bt toxin Cry1Ac and that a mutation is associated with resistance.

View Article and Find Full Text PDF

Cry1Ac Mixed with Gentamicin Influences the Intestinal Microbial Diversity and Community Composition of Pink Bollworms.

Life (Basel)

December 2023

Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

Pink bollworms severely affect the production of cotton. The method currently used for pink bollworm control is the planting of Bt () protein-expressing transgenic cotton. However, pink bollworms can develop strong resistance to Bt proteins in transgenic cotton because of the large planting area and long planting time of this crop, which severely affects the control of pink bollworms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!