Laser Plasma Wakefield Accelerated (LWFA) electron beams and efficiency of betatron X-ray sources is studied using laser micromachined supersonic gas jet nozzle arrays. Separate sections of the target are used for the injection, acceleration and enhancement of electron oscillation. In this report, we present the results of LWFA and X-ray generation using dynamic gas density grid built by shock-waves of colliding jets. The experiment was done with the 40 TW, 35 fs laser at the Lund Laser Centre. Electron energies of 30-150 MeV and 1.0 × 10-5.5 × 10 photons per shot of betatron radiation have been measured. The implementation of the betatron source with separate regions of LWFA and plasma density grid raised the efficiency of X-ray generation and increased the number of photons per shot by a factor of 2-3 relative to a single-jet gas target source.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545103PMC
http://dx.doi.org/10.1038/s41598-020-73805-7DOI Listing

Publication Analysis

Top Keywords

wakefield accelerated
8
electron beams
8
betatron radiation
8
x-ray generation
8
density grid
8
photons shot
8
laser
5
laser wakefield
4
electron
4
accelerated electron
4

Similar Publications

Generation of highly stable electron beam via the control of hydrodynamic instability.

Sci Rep

December 2024

SANKEN (Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.

By employing the stabilizer in the supersonic gas nozzle to produce the plasma density profile with a sharp downramp, we have experimentally demonstrated highly stable electron beam acceleration based on the shock injection mechanism in laser wakefield acceleration with the use of a compact Ti:sapphire laser. A quasi-monoenergetic electron beam with a peak energy of 315 MeV ± 12.5 MeV per shot is generated.

View Article and Find Full Text PDF

Scintillation screens are widely used to diagnose high-charge density, low-average current electron beams from laser wakefield accelerators (LWFAs). However, the absolute response between emitted photons and electron charge has only been calibrated at a limited number of facilities, and there have been discrepancies between these calibrations. In this report, we comprehensively revised the absolute charge calibration of two high relative brightness scintillating screens of LANEX Regular (Carestream) and PI200 (Mitsubishi) by employing the high-brightness photoinjector at the National Synchrotron Radiation Research Center (NSRRC), which provides electron beams with variable charges (50-350 pC per pulse) and energies (26.

View Article and Find Full Text PDF

Laser-driven betatron x rays for high-throughput imaging of additively manufactured materials.

Rev Sci Instrum

December 2024

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.

Betatron x rays from a laser wakefield accelerator provide a new avenue for high-resolution, high-throughput radiography of solid materials. Here, we demonstrate the optimization of betatron x rays for three-dimensional tomography of defects in additively manufactured (AM) alloys at a repetition rate of 2.5 Hz.

View Article and Find Full Text PDF

Threshold modeling for antibiotic stewardship in Oman.

Am J Infect Control

November 2024

Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK; Pharmacy Department, Mid Yorkshire Hospitals NHS Trust, Wakefield, UK. Electronic address:

Background: Antimicrobial stewardship supports rational antibiotic use. However, balancing access to antibiotic treatment while controlling resistance is challenging. This research used a threshold logistic modeling approach to identify targets for antibiotic usage associated with carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Klebsiella pneumonia, and extended-spectrum β-lactamases-producing Escherichia coli incidence in hospitals.

View Article and Find Full Text PDF

Electrons from a laser wakefield accelerator have a limited energy gain due to dephasing and are prone to emittance growth, causing a large divergence. In this paper, we experimentally show that adjusting the plasma density profile can address both issues. Shock-assisted ionisation injection is used to produce 100 MeV quasi-monoenergetic electron bunches in the primary part of the accelerator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!