One of the most robust signals of climate change is the relentless rise in global mean surface temperature, which is linked closely with the water-holding capacity of the atmosphere. A more humid atmosphere will lead to enhanced moisture transport due to, among other factors, an intensification of atmospheric rivers (ARs) activity, which are an important mechanism of moisture advection from subtropical to extra-tropical regions. Here we show an enhanced evapotranspiration rates in association with landfalling atmospheric river events. These anomalous moisture uptake (AMU) locations are identified on a global scale. The interannual variability of AMU displays a significant increase over the period 1980-2017, close to the Clausius-Clapeyron (CC) scaling, at 7 % per degree of surface temperature rise. These findings are consistent with an intensification of AR predicted by future projections. Our results also reveal generalized significant increases in AMU at the regional scale and an asymmetric supply of oceanic moisture, in which the maximum values are located over the region known as the Western Hemisphere Warm Pool (WHWP) centred on the Gulf of Mexico and the Caribbean Sea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544831 | PMC |
http://dx.doi.org/10.1038/s41467-020-18876-w | DOI Listing |
Nature
December 2024
Yale University, Department of Earth and Planetary Sciences, New Haven, CT, USA.
Atmospheric rivers (ARs) are narrow regions of intense water vapour transport in the Earth's atmosphere. These transient phenomena carry water from the subtropics to the mid-latitudes and polar regions, making up the majority of polewards moisture transport and exerting control on the precipitation and water resources in many regions. In addition to transporting moisture, ARs also transport heat, but the impact of this transport on global near-surface air temperatures has not yet been characterized.
View Article and Find Full Text PDFSci Total Environ
December 2024
Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
Flash droughts (FDs), which are characterized by rapid intensification, occurred frequently over Eastern China, posing great challenges for drought forecasting and preparation on subseasonal timescale. However, the drivers of the rapid development of FDs are not well understood. By comparing with slow droughts (SDs), this study investigates the dominant physical processes responsible for FDs in four different regions over Eastern China through diagnosing moisture budgets and further linking them to large-scale atmospheric circulation patterns.
View Article and Find Full Text PDFSci Total Environ
December 2024
Environmental Change Institute, School of Geography and the Environment, Oxford University, Oxford OX1 3QY, UK; Leverhulme Centre for Nature Recovery, University of Oxford, UK.
Interactions between multiple global change stressors are a defining characteristic of the Anthropocene. Tree-associated pathogens are affecting forested ecosystems worldwide and occur in the context of increased frequency and intensity of extreme climate events such as heat waves, droughts, and floods. The effects of these events, along with subsequent changes in environmental conditions, on remaining and regenerating trees, are not well understood but crucial for the restoration and conservation of forested habitats.
View Article and Find Full Text PDFNat Commun
August 2024
Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ, USA.
Wave interference between transient waves and climatological stationary waves is a useful framework for diagnosing the magnitude of stationary waves. Here, we find that the wave interference over the North Pacific Ocean is an important driver of North American wintertime cold and heavy precipitation extremes in the present climate, but that this relationship is projected to weaken under increasing greenhouse gas emissions. When daily circulation anomalies are in-phase with the climatological mean state, the anomalous transport of heat and moisture causes the enhanced occurrence of cold extremes across the continental U.
View Article and Find Full Text PDFSci Total Environ
November 2024
Department of Physics, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India.
The present research investigates the dynamics and underlying causes contributing to the exceptional intensity of Super Cyclonic Storm (SuCS) Amphan (16th to 21st May 2020) over the Bay of Bengal (BoB), as well as its impact on aerosol redistribution along the four cities of eastern coast and north-eastern India. Notably, the SuCS was formed during the first phase of the COVID-19 lockdown in India, giving it a unique aspect of study and analysis. Our analysis based on 30 years of climatology data from Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) reanalysis reveals 'positive' monthly anomalous winds (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!