All organisms have a stress response system to cope with environmental threats, yet its precise form varies hugely within and across individuals, populations, and species. While the physiological mechanisms are increasingly understood, how stress responses have evolved remains elusive. Here, we show that important insights can be gained from models that incorporate physiological mechanisms within an evolutionary optimality analysis (the 'evo-mecho' approach). Our approach reveals environmental predictability and physiological constraints as key factors shaping stress response evolution, generating testable predictions about variation across species and contexts. We call for an integrated research programme combining theory, experimental evolution, and comparative analysis to advance scientific understanding of how this core physiological system has evolved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tree.2020.09.003 | DOI Listing |
ACS Nano
January 2025
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom.
Background: The literature is equivocal as to whether the predicted negative mental health impact of the COVID-19 pandemic came to fruition. Some quantitative studies report increased emotional problems and depression; others report improved mental health and well-being. Qualitative explorations reveal heterogeneity, with themes ranging from feelings of loss to growth and development.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
3School of Mechanical Engineering, Yanshan University, Hebei, China.
: This study aimed to explore how the microarchitectural features of lacunae and perilacunar zones impact the biomechanics of microdamage accumulation in cortical bone, crucial for understanding bone disorders' pathogenesis and developing preventive measures. : Utilizing the phase field finite element method, the study analyzed three bone unit models with varying microarchitecture: one without lacunae, one with lacunae and one including perilacunar zones, to assess their effects on cortical bone's biomechanical properties. : The presence of lacunae was found to increase microcrack initiation risk, acting as nucleation points and accelerating microcrack propagation.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
1School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
: Brain tissue immersed in cerebrospinal fluid often exhibits complex mechanical behaviour, especially the nonlinear stress- strain and rate-dependent responses. Despite extensive research into its material properties, the impact of solution environments on the mechanical behaviour of brain tissue remains limited. This knowledge gap affects the biofidelity of head modelling.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
2Daping Hospital, Army Medical Center, Chongqing, China.
: This study explores how thoracic orientation affects lung pressure and injury outcomes from shock waves, building on earlier research that suggested human posture impacts injury severity. : A layered finite element model of the chest was constructed based on the Chinese Visual Human Dataset (CVH), including the rib and intercostal muscle layers. The dynamic response of the chest under 12 different angle-oriented shock waves under incident pressures of 200 kPa and 500 kPa was calculated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!