The livelihoods of millions of people living in the world's deltas are deeply interconnected with the sediment dynamics of these deltas. In particular a sustainable supply of fluvial sediments from upstream is critical for ensuring the fertility of delta soils and for promoting sediment deposition that can offset rising sea levels. Yet, in many large river catchments this supply of sediment is being threatened by the planned construction of large dams. In this study, we apply the INCA hydrological and sediment model to the Mekong River catchment in South East Asia. The aim is to assess the impact of several large dams (both existing and planned) on the suspended sediment fluxes of the river. We force the INCA model with a climate model to assess the interplay of changing climate and sediment trapping caused by dam construction. The results show that historical sediment flux declines are mostly caused by dams built in PR China and that sediment trapping will increase in the future due to the construction of new dams in PDR Lao and Cambodia. If all dams that are currently planned for the next two decades are built, they will induce a decline of suspended sediment flux of 50% (47-53% 90% confidence interval (90%CI)) compared to current levels (99 Mt/year at the delta apex), with potentially damaging consequences for local livelihoods and ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.142468 | DOI Listing |
Environ Sci Technol
January 2025
Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland.
When microplastics (MPs) enter water bodies, they undergo various transport processes, including sedimentation, which can be influenced by factors such as particle size, density, and interactions with other particles. Surface waters contain suspended natural particles (e.g.
View Article and Find Full Text PDFChemosphere
January 2025
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany; Christian-Albrechts University Kiel, Institute of Geosciences, Ludewig-Meyn-Str, 24118, Kiel, Germany.
Relic munitions from warfare and intentional dumping contaminate coastal waters worldwide, with an estimated 300,000 tons in the German Baltic Sea alone. These contain toxic conventional explosive chemicals, including 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and 1,3-dinitrobenzene (DNB). Corrosion of metal munition housings in seawater releases these munition chemicals (MCs) to the marine environment.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; Center for Convergence Coastal Research, Seoul National University, Siheung-si, Gyeonggi-do 15011, Republic of Korea. Electronic address:
This study evaluated the physiological responses of four marine fish species (Lateolabrax japonicus, Sebastes schlegelii, Platichthys stellatus, and Paralichthys olivaceus) to suspended sediments (SS) generated by marine sand mining. Using oxygen consumption rate (OCR), osmolality, and mortality as endpoints, the effects of SS concentrations ranging from 0 to 10,000 mg L were assessed. L.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Cardiff University, School of Engineering, Hydro-Environmental Research Centre, Cardiff, Wales, UK.
Microplastics (MPs) are ubiquitous in river and freshwater ecosystems. However, the hydraulic and hydrological mechanisms that regulate the activation and emissions of MPs from both the land surface and subsurface into rivers are not well understood. This study aims to quantify the instream MP concentration and MP load in a remote headwater catchment river (Taff Bargoed, Wales, UK), which drains the UK's largest opencast coal mine (Ffos-y-fran), over a two-year period.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry and Biochemistry, Powstańców Warszawy 55, Sopot 81-712, Poland.
Marine sediments are major sources of legacy pollution, capable of releasing toxic mercury (Hg) into the water column when disturbed. This study evaluated Hg remobilization from surface sediments during resuspension events by examining sediment properties, Hg concentrations, and speciation. Research was conducted in the southern Baltic Sea, representing diverse environmental conditions and human impacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!