Unstable population dynamics in obligate co-operators.

Theor Popul Biol

Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor St. (M/C 066), Chicago, IL 60607, United States of America; Integrated Mathematical Oncology, Moffitt Cancer Center, SRB-4, 12902 USF Magnolia Drive Tampa, FL 33612, United States of America.

Published: December 2020

Cooperation significantly impacts a species' population dynamics as individuals choose others to associate with based upon fitness opportunities. Models of these dynamics typically assume that individuals can freely move between groups. Such an assumption works well for facultative co-operators (e.g. flocking birds, schooling fish, and swarming locusts) but less so for obligate co-operators (e.g. canids, cetaceans, and primates). With obligate co-operators, the fitness consequences from associations are stronger compared to facultative co-operators. Consequently, individuals within a group should be more discerning and selective over their associations, rejecting new members and even removing current members. Incorporating such aspects into population models may better reflect obligately cooperative species. In this paper, we create and analyze a model of the population dynamics of obligate co-operators. In our model, a behavioral game determines within-group population dynamics that then spill over into between-group dynamics. Our analysis shows that group number increases when population dynamics are stable, but additional groups lead to unstable population dynamics and an eventual collapse of group numbers. Using a more general analysis, we identify a fundamental mismatch between the stability of the behavioral dynamics and the stability of the population dynamics. When one is stable, the other is not. Our results suggest that group turnover may be inherent to the population dynamics of obligate co-operators. The instability arises from a non-chaotic deterministic process, and such dynamics should be predictable and testable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tpb.2020.09.002DOI Listing

Publication Analysis

Top Keywords

population dynamics
32
obligate co-operators
20
dynamics
12
dynamics obligate
12
unstable population
8
population
8
facultative co-operators
8
dynamics stable
8
co-operators
7
obligate
5

Similar Publications

The role of the hierarchical organization of the suprachiasmatic nucleus (SCN) in its functioning, jet lag, and the light treatment of jet lag remains poorly understood. Using the core-shell model, we mimic collective behavior of the core and shell populations of the SCN oscillators in transient states after rapid traveling east and west. The existence of a special region of slow dynamical states of the SCN oscillators can explain phenomena such as the east-west asymmetry of jet lag, instances when entrainment to an advance is via delay shifts, and the dynamics of jet lag recovery time.

View Article and Find Full Text PDF

To reduce chronic school absenteeism and morbidity and mortality among school-aged children, the prompt administration of albuterol sulfate in schools remains vital. School-based stock inhaler programs are a practical approach to ensure equitable access to life-saving rescue medication for students. School and community partnerships can potentially strengthen program implementation and fidelity by integrating evidence-based practices into routine care.

View Article and Find Full Text PDF

Large-bodied pelagic sharks are key regulators of oceanic ecosystem stability, but highly impacted by severe overfishing. One such species, the shortfin mako shark (), a globally widespread, highly migratory predator, has undergone dramatic population reductions and is now Endangered (IUCN Red List), with Atlantic Ocean mako sharks in particular assessed by fishery managers as overfished and in need of urgent, improved management attention. Genomic-scale population assessments for this apex predator species have not been previously available to inform management planning; thus, we investigated the population genetics of mako sharks across the Atlantic using a bi-organelle genomics approach.

View Article and Find Full Text PDF

Novel introductions of human-origin H3N2 influenza viruses in swine, Chile.

Front Vet Sci

January 2025

Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.

Influenza A virus (IAV) continuously threatens animal and public health globally, with swine serving as a crucial reservoir for viral reassortment and evolution. In Chile, H1N2 and H3N2 subtypes were introduced in the swine population before the H1N1 2009 pandemic, and the H1N1 was introduced from the H1N1pdm09 by successive reverse zoonotic events. Here, we report two novel introductions of IAV H3N2 human-origin in Chilean swine during 2023.

View Article and Find Full Text PDF

Filamentous cyanobacteria growth assessment using fluorinated ethylene propylene microcapillaries.

MRS Bull

November 2024

Bioelectronics & Bioenergy Research Lab, Centre for Functional Ecology-Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.

Abstract: Filamentous cyanobacteria originate toxic harmful algal blooms (HABs) in aquatic ecosystems, severely impacting freshwater ecosystems and life. Despite being natural bloomers, these microorganisms are challenging to handle , due to the formation of aggregates with entangled filaments. Consequently, their precise growth dynamics, although vital to timely predict HABs, remains inaccessible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!