Transient loss of membrane integrity following intracellular ice formation in dimethyl sulfoxide-treated hepatocyte and endothelial cell monolayers.

Cryobiology

Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada; Centre for Innovation, Canadian Blood Services, 8249 114th Street, Edmonton, AB, T6G 2R8, Canada. Electronic address:

Published: December 2020

Immediate post-thaw evaluation of membrane integrity has proven to yield overestimates of cell survival under conditions that preclude intracellular ice formation (IIF). However, prominent theories on the mechanisms of intracellular nucleation suggest a damaged membrane can reseal, prompting us to evaluate whether immediate post-thaw assessments of membrane integrity can in fact underestimate cell survival under conditions that promote IIF. HUVEC and HepG2 monolayers were treated with 1.4 M DMSO and frozen to -25 °C under conditions that formed either 0% or 100% IIF. Membrane integrity was evaluated both immediately and 24 h post-thaw, with metabolic activity assessments performed 24 h post-thaw as a secondary measure of survival. Treatment with 1.4 M DMSO and nucleation of 100% IIF resulted in a drastic increase in the relative percent of membrane intact cells following a 24 h culture period (HUVEC: 90.2% ± 0.7%; HepG2: 70.4% ± 4.0%), which correlated with 24 h post-thaw metabolic activity. These differences between the immediate and 24 h post-thaw membrane integrity assessments were significantly more than those seen in the absence of either IIF or DMSO treatment. Therefore, a high incidence of IIF in DMSO-treated monolayers may lead to erroneous underestimates of cell survival when conducting immediate post-thaw assessments of membrane integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cryobiol.2020.10.002DOI Listing

Publication Analysis

Top Keywords

membrane integrity
24
cell survival
12
24 h post-thaw
12
membrane
8
intracellular ice
8
ice formation
8
survival conditions
8
post-thaw assessments
8
assessments membrane
8
14 m dmso
8

Similar Publications

Mediastinal mass syndrome represents a major threat to respiratory and cardiovascular integrity, with difficult evidence-based risk stratification for interdisciplinary management. We conducted a narrative review concerning risk stratification and difficult airway management of patients presenting with a large mediastinal mass. This is supplemented by a case report illustrating our individual approach for a patient presenting with a subtotal tracheal stenosis due to a large cyst of the thyroid gland.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is one of the worst solid malignancies in regard to outcomes and metabolic dysfunction leading to cachexia. It is alarming that PDAC incidence rates continue to increase and warrant the need for innovative approaches to combat this disease. Due to its relatively slow progression (10-20 years), prevention strategies represent an effective means to improve outcomes.

View Article and Find Full Text PDF

The present study aimed to investigate the ability of an aqueous extract derived from mustard seed meal to counteract the effects of endotoxin lipopolysaccharide (LPS) on the intestinal epithelium. Caco-2 cells were cultured together with HT29-MTX and used as a cellular model to analyze critical intestinal parameters, such as renewal, integrity, innate immunity, and signaling pathway. Byproducts of mustard seed oil extraction are rich in soluble polysaccharides, proteins, allyl isothiocyanates, and phenolic acids, which are known as powerful antioxidants with antimicrobial and antifungal properties.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake.

View Article and Find Full Text PDF

With the growing interest in nanofibers and the urgent need to address environmental concerns associated with plastic waste, there is an increasing focus on using recycled materials to develop advanced healthcare solutions. This study explores the potential of recycled poly(ethylene terephthalate) (PET) nanofibers, functionalized with copper-enhanced alginate, for applications in wound dressings. Nanofibers with desirable antimicrobial properties were developed using chemical recycling and electrospinning techniques, offering a sustainable and effective option for managing wound infections and promoting healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!